

©Confidential Page: 1 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

OPEN AT® IP CONNECTIVITY
DEVELOPMENT GUIDE (WIPlib V2.00)

Revision: 005
Date: March 16, 2007

Open AT® IP Connectivity
Development Guide
 (WIPlib V2.00)

Reference: WM_DEV_OAT_UGD_021

Revision: 005

Date: March 16, 2007

©Confidential Page: 2 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Open AT® IP Connectivity Development Guide (WIPlib V2.00)

©Confidential Page: 3 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Trademarks
®,WAVECOM®, WISMO®, Open AT® and certain other trademarks and

logos appearing on this document, are filed or registered trademarks of
Wavecom S.A. in France or in other countries. All other company and/or
product names mentioned may be filed or registered trademarks of their
respective owners.

Open AT® IP Connectivity Development Guide (WIPlib V2.00)

©Confidential Page: 4 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Copyright
This manual is copyrighted by Wavecom with all rights reserved. No part
of this manual may be reproduced in any form without the prior written
permission of Wavecom.

No patent liability is assumed with respect to the use of the information
contained herein.

Open AT® IP Connectivity Development Guide (WIPlib V2.00)

©Confidential Page: 5 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Overview
The aim of this document is to provide Wavecom customers with a full
description of the APIs associated with the Open AT® IP Connectivity
library.

Open AT® IP Connectivity Development Guide (WIPlib V2.00)

©Confidential Page: 6 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Document History
Level Date History Of the

Evolution
Writer

001 May 22 2006 Creation Wavecom

002 August 7 2006 Preliminary Wavecom

003 September 22 2006 2nd Preliminary Wavecom

004 December 15 2006 Final Wavecom

005 March 16, 2007 Update for maintenance
version

Wavecom

Open AT® IP Connectivity Development Guide (WIPlib V2.00)

©Confidential Page: 7 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Contents
1 INTRODUCTION ..14

1.1 Related Documents ...14
1.2 Abbreviations and Glossary...15
1.3 Glossary ..17

2 GLOBAL ARCHITECTURE...18
2.1 Concepts ...18
2.2 Feature Description ...19
2.3 New Interface..22
2.4 Use Cases ...23
2.5 Channels Logical Hierarchy ...24
2.5.1 Channel: Abstract, Basic I/O Handle...25
2.5.2 Data Channel: Abstract Data Transfer Handle ..26
2.5.3 TCPServer: Server TCP Socket ...26
2.5.4 TCPClient: Communication TCP Socket..27
2.5.5 UDP: UDP Socket ...27
2.6 Options ...28
2.6.1 Option Series ...28
2.6.2 Example ...28

3 INITIALIZATION OF THE IP CONNECTIVITY LIBRARY30
3.1 Required Header File ...31
3.2 The wip_netInit Function ...32
3.2.1 Prototype ...32
3.2.2 Parameters...32
3.2.3 Returned Values...32
3.3 The wip_netInitOpts Function..33
3.3.1 Prototype ...33
3.3.2 Parameters...33
3.3.3 Returned Values...34
3.4 The wip_netExit Function ..35
3.4.1 Prototype ...35
3.4.2 Parameters...35
3.4.3 Returned Values...35
3.5 The wip_netSetOpts Function ...36
3.5.1 Prototype ...36
3.5.2 Parameters...36
3.5.3 Returned Values...37
3.6 The wip_netGetOpts Function ...38
3.6.1 Prototype ...38
3.6.2 Parameters...38
3.6.3 Returned Values...38

4 IP BEARER MANAGEMENT ...39
4.1 State Machine ...40
4.2 Required Header File ...42
4.3 IP Bearer Management Types..43
4.3.1 The wip_bearer_t Structure ..43

Open AT® IP Connectivity Development Guide (WIPlib V2.00)

©Confidential Page: 8 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4.3.2 The wip_bearerType_e Type ...43
4.3.3 The wip_bearerInfo_t Structure...43
4.3.4 The wip_ifindex_t Structure..43
4.4 The wip_bearerOpen Function...44
4.4.1 Prototype ...44
4.4.2 Parameters...44
4.4.3 Returned Values...45
4.5 The wip_bearerClose Function...47
4.5.1 Prototype ...47
4.5.2 Parameters...47
4.5.3 Returned Values...47
4.6 The wip_bearerSetOpts Function...48
4.6.1 Prototype ...48
4.6.2 Parameters...48
4.6.3 Returned Values...50
4.7 The wip_bearerGetOpts Function ..51
4.7.1 Prototype ...51
4.7.2 Parameters...51
4.7.3 Returned Values...51
4.8 The wip_bearerStart Function..52
4.8.1 Prototype ...52
4.8.2 Parameters...52
4.8.3 Events..52
4.8.4 Returned Values...53
4.9 The wip_bearerAnswer Function ...54
4.9.1 Prototype ...54
4.9.2 Parameters...54
4.9.3 Events..54
4.9.4 Returned Values...54
4.10 The wip_bearerStartServer Function..55
4.10.1 Prototype ...55
4.10.2 Parameters...55
4.10.3 Events..57
4.10.4 Returned Values...57
4.11 The wip_bearerStop Function..58
4.11.1 Prototype ...58
4.11.2 Parameters...58
4.11.3 Events..58
4.11.4 Returned Values...58
4.12 The wip_bearerGetList Function ..59
4.12.1 Prototype ...59
4.12.2 Parameters...59
4.12.3 Returned Values...59
4.13 The wip_bearerFreeList Function ..60
4.13.1 Prototype ...60
4.13.2 Parameters...60
4.13.3 Returned Values...60

5 INTERNET PROTOCOL SUPPORT LIBRARY61
5.1 Required Header File ...62

Open AT® IP Connectivity Development Guide (WIPlib V2.00)

©Confidential Page: 9 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

5.2 The wip_in_addr_t Structure ..63
5.3 The wip_inet_aton Function...64
5.3.1 Prototype ...64
5.3.2 Parameters...64
5.3.3 Returned Values...64
5.4 The wip_inet_ntoa Function...65
5.4.1 Prototype ...65
5.4.2 Parameters...65
5.4.3 Returned Values...65

6 SOCKET LAYER ...66
6.1 Common Types ...66
6.1.1 Channels..66
6.1.2 Event Structure ..66
6.1.3 Opaque Channel Type..67
6.1.4 Event Handler Callback wip_eventHandler_f ...68
6.1.5 Options ..68
6.2 Common Channel Functions ...72
6.2.1 The wip_close Function..72
6.2.2 The wip_read Function...73
6.2.3 The wip_readOpts Function ...74
6.2.4 The wip_write Function..75
6.2.5 The wip_writeOpts Function ..76
6.2.6 The wip_getOpts Function ...77
6.2.7 The wip_setOpts Function..78
6.2.8 The wip_setCtx Function..79
6.2.9 The wip_getState Function...80
6.3 UDP: UDP Sockets...81
6.3.1 State Charts ...81
6.3.2 The wip_UDPCreate Function...83
6.3.3 The wip_UDPCreateOpts Function ...84
6.3.4 The wip_getOpts Function ...86
6.3.5 The wip_setOpts Function..88
6.3.6 The wip_readOpts Function ...89
6.3.7 The wip_writeOpts Function ..90
6.4 TCPServer: Server TCP Sockets ...91
6.4.1 The wip_TCPServerCreate Function..92
6.4.2 The wip_TCPServerCreateOpts Function ..93
6.4.3 The wip_getOpts Function ...95
6.4.4 The wip_setOpts Function..97
6.5 TCPClient: TCP Communication Sockets99
6.5.1 Read/Write Events ..99
6.5.2 Statecharts...102
6.5.3 The wip_TCPClientCreate Function...105
6.5.4 The wip_TCPClientCreateOpts Function ...106
6.5.5 The wip_abort Function..108
6.5.6 The wip_shutdown Function..109
6.5.7 The wip_getOpts Function ...110
6.5.8 The wip_setOpts Function..112
6.5.9 The wip_readOpts Function ...113
6.5.10 The wip_writeOpts Function ..114

Open AT® IP Connectivity Development Guide (WIPlib V2.00)

©Confidential Page: 10 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.6 Ping: ICMP Echo Request Handler...115
6.6.1 The wip_pingCreate Function...115
6.6.2 The wip_pingCreateOpts Function ...116
6.6.3 The wip_getOpts Function ...118
6.6.4 The wip_setOpts Function..119

7 FILE...120
7.1 Required Header File ...121
7.2 The wip_getFile Function...122
7.2.1 Prototype ...122
7.2.2 Parameters...122
7.2.3 Returned Values...122
7.3 The wip_getFileOpts Function ...123
7.3.1 Prototype ...123
7.3.2 Parameters...123
7.3.3 Returned Values...123
7.4 The wip_putFile Function ..124
7.4.1 Prototype ...124
7.4.2 Parameters...124
7.4.3 Returned Values...124
7.5 The wip_putFileOpts Function ...125
7.5.1 Prototype ...125
7.5.2 Parameters...125
7.5.3 Returned Values...125
7.6 The wip_cwd Function ..126
7.6.1 Prototype ...126
7.6.2 Parameters...126
7.6.3 Returned Values...126
7.7 The wip_mkdir Function ..127
7.7.1 Prototype ...127
7.7.2 Parameters...127
7.7.3 Returned Values...127
7.8 The wip_deleteFile Function ..128
7.8.1 Prototype ...128
7.8.2 Parameters...128
7.8.3 Returned Values...128
7.9 The wip_deleteDir Function ...129
7.9.1 Prototype ...129
7.9.2 Parameters...129
7.9.3 Returned Values...129
7.10 The wip_renameFile Function ..130
7.10.1 Prototype ...130
7.10.2 Parameters...130
7.10.3 Returned Values...130
7.11 The wip_getFileSize Function ..131
7.11.1 Prototype ...131
7.11.2 Parameters...131
7.11.3 Returned Values...131
7.12 The wip_list Function ..132
7.12.1 Prototype ...133

Open AT® IP Connectivity Development Guide (WIPlib V2.00)

©Confidential Page: 11 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.12.2 Parameters...133
7.12.3 Returned Values...134
7.13 The wip_fileInfoInit Function..135
7.13.1 Prototype ...135
7.13.2 Parameters...135
7.13.3 Returned Values...136

8 FTP CLIENT...137
8.1 Required Header File ...138
8.2 The wip_FTPCreate Function ...139
8.2.1 Prototype ...139
8.2.2 Parameters...139
8.2.3 Returned Values...139
8.3 The wip_FTPCreateOpts Function..140
8.3.1 Prototype ...140
8.3.2 Parameters...140
8.3.3 Returned Values...141
8.4 The wip_setOpts Function...142
8.5 The wip_getOpts Function...144
8.6 The wip_close Function ...147
8.7 The wip_getFile Function...148
8.8 The wip_getFileOpts Function ...149
8.9 The wip_putFile Function ..150
8.10 The wip_putFileOpts Function ...151

9 HTTP CLIENT ..152
9.1 Required Header File ...153
9.2 The wip_httpVersion_e Type..154
9.3 The wip_httpMethod_e Type ...155
9.4 The wip_httpHeader_t Type ...156
9.5 The wip_HTTPClientCreate Function......................................157
9.5.1 Prototype ...157
9.5.2 Parameters...157
9.5.3 Returned Values...157
9.6 The wip_HTTPClientCreateOpts Function158
9.6.1 Prototype ...158
9.6.2 Parameters...158
9.6.3 Returned Values...159
9.7 The wip_getFile Function...160
9.8 The wip_getFileOpts Function ...161
9.9 The wip_putFile Function ..162
9.10 The wip_putFileOpts Function ...163
9.11 The wip_read Function ..164
9.12 The wip_write Function...165
9.13 The wip_shutdown Function ...166
9.14 The wip_setOpts Function...167
9.15 The wip_getOpts Function...168
9.16 The wip_abort Function...170
9.17 The wip_close Function ...171

10 SMTP CLIENT API ...172

Open AT® IP Connectivity Development Guide (WIPlib V2.00)

©Confidential Page: 12 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

10.1 Required Header File ...173
10.2 The Session / Connection Channel...174
10.2.1 The wip_SMTPClientCreate Function ...174
10.2.2 The wip_SMTPClientCreateOpts Function ..175
10.2.3 The wip_getOpts Function ...177
10.2.4 The wip_close Function..178
10.3 The Data Channel..179
10.3.1 The wip_putFileOpts Function..179
10.3.2 The wip_getOpts Function ...180
10.3.3 The wip_write Function..181
10.3.4 The wip_close Function..182

11 POP3 CLIENT API ..183
11.1 Required Header File ...184
11.2 The Session / Connection Channel...185
11.2.1 The wip_POP3ClientCreate Function ..185
11.2.2 wip_POP3ClientCreateOpts ..186
11.2.3 The wip_getOpts Function ...188
11.2.4 The wip_listOpts Function..189
11.2.5 The wip_read Function...191
11.2.6 The wip_deleteFile Function ...192
11.2.7 The wip_close Function..193
11.3 The Data Channel..194
11.3.1 The wip_getFile Function ...194
11.3.2 The wip_getFileOpts Function ..195
11.3.3 The wip_read Function...196
11.3.4 The wip_getOpts Function ...197
11.3.5 The wip_close Function..198

12 EXAMPLES OF APPLICATION ..199
12.1 Initializing a GPRS Bearer ..199
12.2 Simple TCP Client/Server ...201
12.2.1 Server ..201
12.2.2 Client ...202
12.3 Advanced TCP Example ..205
12.4 Simple FTP Example..210
12.5 Advanced FTP Example...215
12.6 Simple HTML Example ..216
12.7 Simple SMTP Example ..218
12.8 Simple POP3 Example ...219

13 ERROR CODES ..220
13.1 IP Communication Plug-In Initialization and Configuration error
codes ...220
13.2 Bearer service error codes ...221
13.3 Channel error codes ..222

Open AT® IP Connectivity Development Guide (WIPlib V2.00)

©Confidential Page: 13 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

List of Figures
Figure 1 Communication between Four Equipments19
Figure 2 Uses of the New IP Stack (Use Cases 2 and 3 are Exclusive) .19
Figure 3 Channel Classes Hierarchy...25
Figure 4 TCP Socket Spawning Process ..26
Figure 5 Bearer Management API State Diagram.................................40
Figure 6 UDP Channel State Diagram..81
Figure 7 UDP Channel Temporal Diagram ...82
Figure 8 TCP Server Channel State Diagram..91
Figure 9 Generation of Read event...99
Figure 10 Generation of Write event...101
Figure 11 TCP Communication Channel State Diagram....................102
Figure 12 TCP Communication Channel Simplified State Diagram ...103
Figure 13 TCP Communication Channel Temporal Diagram104
Figure 14 Mail Sending Steps ..172
Figure 15 State machine of a simple FTP application213

Introduction

Related Documents

©Confidential Page: 14 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

1 Introduction

1.1 Related Documents

None

Introduction

Abbreviations and Glossary

©Confidential Page: 15 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

1.2 Abbreviations and Glossary
ADL Application Development Layer

API Application Programming Interface

APN Access Point Name

AT Attention

BSD Berkeley Software Distribution

CHAP Challenge Handshake Authentication Protocol

CID Context Identifier

DNS Domain Name Service

EDGE Enhanced Data rates for GSM Evolution

FTP File Transfer Protocol

GGSN Gateway GPRS Support Node

GPRS General Packet Radio Service

GSM Global System for Mobile Communication

HTTP Hyper Text Transfer Protocol

ICMP Internet Control Message Protocol

IGMP Internet Group Management Protocol

IMAP Internet Message Access Protocol

IN/OUT/GLB In, Out or Global. See Glossary.

IP Internet Protocol

IPCP Internet Protocol Control Protocol

LCP Link Control Protocol

M Mandatory

MS-CHAP Microsoft Challenge Handshake Authentication

MS Mobile Station

MSS Maximum Segment Size

NA Not Applicable

NU Not Used

O Optional

PAP Password Authentication Protocol

Introduction

Abbreviations and Glossary

©Confidential Page: 16 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

PDP Packet Data Protocol

POP3 Post Office Protocol

POSIX Portable Operating System Interface

PPP Point-to-Point Protocol

RFC Request For Comments

SMS Short Messaging Service

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

TOS Type Of Service

TTL Time To Live

UART Universal Asynchronous Receiver Transmitter

UDP User Data Protocol

USB Universal Serial Bus

WIFI Wireless Fidelity

3G The third generation of developments in wireless technology

Introduction

Glossary

©Confidential Page: 17 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

1.3 Glossary

In/out/Glb: used in function parameters:

• “In” if the parameter is given to the function

• “Out” if the parameter is the result of the function

• “Glb” (for Global) if the parameter is used for both

Global Architecture

Concepts

©Confidential Page: 18 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

2 Global Architecture

2.1 Concepts

A network operation involves reading and writing data through channels.
Once a channel is properly opened and set up, reading and writing
through it is largely protocol independent.

Wavecom provides a generic, high-level API that abstracts the underlying
protocols of communication channels. This API relies on the following key
concepts:

Channels are opaque data which represent a means of communication;
for example, an open and connected socket. This interface could be
reused for other protocols such as X -MODEM over an UART, SMS over
GSM.

Events, being single-threaded, need non-blocking operations. The
channels have a callback function registered with them, which describe
how to react to noteworthy events, mainly read, write, close and an error.

Options are used to provide user defined configurations. The APIs are
available in two formats.

APIs with no options (BASIC): These APIs uses default settings. For
example, wip_netInit API is used to initialize the WIP library with default
settings.

APIs with options (OPT): These APIs accept a series of variable
arguments of the form (OPTION_ID_0, optionValue_0, OPTION_ID_n,
optionValue_n, END_MARKER) and are used to configure with user
defined settings .Note that the options provided by the user will be
checked at runtime for consistency.

The channels that are implemented to support IP are:

• TCP server sockets

• TCP communication sockets

• UDP sockets (communication sockets, as there is no notion of
server in UDP)

• ICMP/Ping sockets

Global Architecture

Feature Description

©Confidential Page: 19 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

2.2 Feature Description

Open AT® customers are provided with an advanced set of APIs that give
them complete IP connectivity control. This allows an Open AT®
application to communicate using IP connectivity on different types of
bearers (UART, GSM, GPRS, and EDGE) simultaneously.

Figure 1 Communication between Four Equipments

Notice that Wireless CPU® #1(the one on the left) has two IP addresses,
one for each link.

F

Open A ch can provide better
capa i

The soc er gives high-level access to communication
abilit
chann

igure 2 Uses of the New IP Stack (Use Cases 2 and 3 are Exclusive)

T® also supports ‘pure’ IP APIs whi
bil ties and control.

ket abstraction lay
ies, through a channel and its dedicated API. The following types of

els are implemented:

Global Architecture

Feature Description

©Confidential Page: 20 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

nel implementation, which allows users to create and
nt and server TCP sockets

 which allows users to create and

 allows users to configure
, or “pings”, and to receive

The bearer s IP
conn activated
simu

•

onnection on an UART

Featu

• uirements for host-to-host interoperability

• nterfaces (forwarding of packets
lt)

Socket Layer:

• f socket receive and send buffers

of some IP header fields such as TTL, TOS, "Don’t

TCP Sockets:

• congestion control (slow start, congestion avoidance, fast
retransmit and fast recovery)

• option for disabling the Naggle algorithm

• immediate notification of all connection state changes

• support for normal connection termination and reset of the
connection

DNS Resolver:

• integrated into the socket abstraction layer

• support for primary and secondary DNS servers

• a TCP chan
use clie

• a UDP channel implementation,
use UDP sockets

• a PING channel implementation, which
and send ICMP ECHO requests
feedback on response times, routing errors or timeout errors

s are handled by the bearer manager which provide
ectivity using various links. Several bearers can be
ltaneously. The following links are currently supported:

GSM data

• GPRS

• direct c

res of the TCP/IP protocol Stack include:

• IP, ICMP, UDP, TCP Protocols

 all RFC 1122 req

• fragmentation and reassembly of IP datagrams

support for multiple network i
between interfaces is not enabled by defau

• loopback interface

configuration o

• control
fragment" flag

Global Architecture

Feature Description

©Confidential Page: 21 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

The PPP is required by GSM and UART bearers, the following features are
supported:

• client and server mode

• authentication using PAP, CHAP, MS-CHAPv1 or MS-CHAPv2

• auto-configuration of IP address, primary and secondary DNS
servers

Global Architecture

New Interface

©Confidential Page: 22 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

2.3 New Interface

The new version of the IP stack provides a rich and simple user interface.
The advantages of this new interface are as follows:

• clearly distinguishes the management of the bearer (GSM/GPRS)
from the IP sockets management

• provides the user with the flexibility to configure and set IP related
parameters. For example, during configuration of the bearer using
PPP protocol, the user can select different authentication
mechanisms such as PAP, CHAP/MS_CHAP

• provides an interface to configure the maximum number of
sockets that can be used by the customer application

• allows the customer application to manage the socket
dynamically (BSD-like interface)

Global Architecture

Use Cases

©Confidential Page: 23 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

2.4 Use Cases

This feature can be used by all Open AT® users who communicate with
IP, using GPRS, serial links, or any IP-compatible physical peripherals
(WIFI, Ethernet) or radio bearers (EDGE, 3G) supported by Wavecom
Wireless CPU®.

The channel abstraction can also be used to encapsulate all kinds of
network-oriented protocols such as X-MODEM, FTP, HTTP, POP, IMAP
and SMS. With the uniform channel API, an application can change the
communication channel it uses easily without any modification of its
source code (except channel opening).

Global Architecture

Channels Logical Hierarchy

©Confidential Page: 24 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

2.5 Channels Logical Hierarchy

Although there is no native support for object-oriented inheritance in C,
different channels implementing various services are related to one
another in terms of the services they support. These channels support a
minimal number of common APIs which include creation, closing,
reaction to events, and advanced configuration option lists. Most of the
channels additionally support read and write operations. Many future
channel types support concurrent download and upload of data, identified
by a resource string: FTP, HTTP, IMAP, POP and access to local file
system. These APIs defined as successive extensions should be seen as
refinements of channel types and subtypes. To present them, we will
specify abstract channel types, which introduce these APIs; actual
protocols will be concrete implementations of these abstract interfaces.

Global Architecture

Channels Logical Hierarchy

©Confidential Page: 25 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Figure 3 Channel Classes Hierarchy

2.5.1 Channel: Abstract, Basic I/O Handle

This channel supports the getOpts, setOpts and close operations. There is
no real implementation of a channel; it is only the common interface for
actual protocols.

Events that are supported by this channel include WIP_CEV_PEER_CLOSE
and ERROR. ERROR has an errno number and an error message as
parameters.

Global Architecture

Channels Logical Hierarchy

©Confidential Page: 26 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

ansfer Handle

his is also an abstract channel type. It supports functions such as read,
readOpts, write, writeOpts, as well as channel functions (close, getOpts,
setOpts).

It supports events such as:

• READ (data has arrived)

• WRITE (buffer space has been freed to send some data)

• channel events

READ has an u32 readable field indicating the number of readable bytes,
and WRITE has an u32 writable field which indicates how much data can
be written. As a specialization of channel, it also supports the event
WIP_CEV_PEER_CLOSE.

2.5.3 TCPServer: Server TCP Socket

2.5.2 Data Channel: Abstract Data Tr

T

Figure 4 TCP Socket Spawning Process

TCPServer does not have a specialized dataChannel; it neither supports

peered with the
read nor supports write. Its purpose is to listen for connection requests,
accept them, and spawn a TCP communication socket
one that requested the communication. TCPServers supports create,
getopt, setopt and close operations.

Global Architecture

Channels Logical Hierarchy

©Confidential Page: 27 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

ttern. A globally
know es secondary, communication channels. In the
TCP server case, a server TCP socket listens on a familiar port such as 80
for H tacts the server
sock
specially created socket on the
server socket. A direct communication between the server and the client

e it inherits from, it supports creation through
wning

 creating the socket

co hrough a server socket

e

ot exposed to

the POSIX automaton.

Shutdown allows closing communication in only one way. After a
shutdown, one of the peered sockets will only be allowed to send data
and the other one will only be allowed to receive them.

Aborting a socket is a special way to close it, generally in response to an
error. If an abort is requested on one socket, the peer closes it with an
error message and does not wait till the pending data is handled.

2.5.5 UDP: UDP Socket

UDP sockets support the reading and writing of datagrams which are
atomic data packets. However this does not guarantee that they arrive at
the destination or that they arrive in order and are not duplicated. In
addition to channel operations, they support a specific wip_UDPCreate()
creation function. Since UDP does not work in a connected mode, there is
no way for a socket to receive a WIP_CEV_PEER_CLOSE event. Write
operations on UDP sockets are performed synchronously.

2.5.3.1 Spawning

Spawning a communication is a common POSIX pa
n server channel creat

TTP and 21 for FTP. Whenever a remote socket con
et, a communication is established between the client socket and a

server side, which is spawned by the

socket must be avoided, as that would monopolize the server socket.

2.5.4 TCPClient: Communication TCP Socket

TCPClients read and write a reliable and ordered byte stream. In addition
to the dataChannel interfac
wip_TCPClientCreate[Opts]() (creation can also happen through Spa
by TCPServer, equivalent of BSD's accept()) it also supports the Abort()
and Shutdown() functions.

Creation of TCP clients can happen due to local creation and connection
requests on a remote server socket. This includes:

•

• nnecting it to a host t

• setting up a callback to react to network events happening to th
socket

All of this happens at once in a single wip_TCPServerCreate() API call, so
that the user is not exposed to partially configured communication
sockets that are not yet in a usable state. As soon as it is created, the
socket is up and running, until it is closed and the user is n

Global Architecture

Options

©Confidential Page: 28 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

2.6 Options

Options are used for advanced channel control. First, the configuration of
an open channel can be altered with setOpts() and read with getOpts().
Some options are mainly used at creation time (for example, while
creating an account name for an anonymous FTP session). To handle
such initialization-time options, for every foobarCreate() function, there is
a dual foobarCreateOpts() function, which takes the same parameters as
the former, plus a series of options settings. Finally, some protocols
support special forms of read and write operations. In these cases,
readOpts() and writeOpts() functions must be used instead of read() and
write(); as expected, they take the same parameters as their counterparts
without options, plus a series of options.

2.6.1 Option Series

In C language, a variable number of parameters can be passed to a
function, for which types are not checked (because of the special “…”
parameter). For the functions that accept options, we rely on a set of int
constant values which identify channel options, prefixed with
WIP_COPT_; for example, WIP_COPT_USERNAME, WIP_COPT_TRUNCATE
and WIP_COPT_PORT. An option identifier is followed by its actual
contents. For instance, WIP_COPT_USERNAME is followed by a const
ascii* pointer which contains the user name as a string. The option name
indicates the next data type to the function. It is possible for an option to
take several parameters, or no parameter at all. Finally, C does not provide
a way for a function accepting a variable number of parameters, to know
when it has reached its last parameter. Therefore, a special option
identifier WIP_COPT_END, which takes no value, indicates the end of the
option series.

2.6.2 Example

Here is a simple write operation:

err = wip_write (channel, buffer, buf_len);

A more elaborate writing, with some special settings would be as
follows:

err = wip_writeOpts (channel, buffer, buf_len,

 WIP_COPT_DONTFRAG, true,

 WIP_COPT_TTL, 5,

 WIP_COPT_END);

Global Architecture

Options

©Confidential Page: 29 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

The set of options accepted by an Opts functions depend on the
underlying protocol of the channel. The function checks at runtime
whether or not the options it receives are supported, and causes an
ENOTSUPPORTED error when it receives an unsupported option. It is
better to sort these options by channel type than by function. Hence, the
API specification will hereafter be split by channel type rather than by
function.

Initialization of the IP Connectivity Library

Options

©Confidential Page: 30 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

3 Initialization of the IP Connectivity
Library

The IP connectivity library must be initialized by an application. During
initialization, some parameters of the TCP/IP stack can be provided, such
as the number of sockets and the memory used by network buffers. The
default configuration should provide settings that are equivalent to the
previous version of the TCP/IP stack.

The other modules of the IP connectivity library, the bearer manager and
the socket communication layer, are also initialized by the functions
described in the sections that follow.

Initialization of the IP Connectivity Library

Required Header File

©Confidential Page: 31 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

3.1 Required Header File

The header file for the IP connectivity initialization is wip_net.h.

Initialization of the IP Connectivity Library

The wip_netInit Function

©Confidential Page: 32 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

3.2 The wip_netInit Function

The wip_netInit function initializes the TCP/IP stack with a default
configuration. This function or its variant wip_netInitOpts must be first
called by the application before using any IP communication library
service.

The memory is allocated for each predefined socket, network buffer etc.
The memory required for the configuration can be calculated by, the size
of the different elements such as number of sockets, socket buffers etc.
The size of the different element is as follows:

Option Size in Bytes

WIP_NET_OPT_SOCK_MAX 380

WIP_NET_OPT_BUF_MAX 1544

WIP_NET_OPT_IP_ROUTE_MAX 24

WIP_NET_OPT_RSLV_QUERY_MAX 128

WIP_NET_OPT_RSLV_CACHE_MAX 224

3.2.1 Prototype

s8 wip_netInit (void);

3.2.2 Parameters

None

3.2.3 Returned Values

This function returns

• 0 if the TCP/IP stack has been successfully initialized

• in case of an error, the function returns a negative error code
WIP_NET_ERR_NO_MEM only if an application is subscribed to
adl_errSubscribe() otherwise, the module restarts

Initialization of the IP Connectivity Library

The wip_netInitOpts Function

©Confidential Page: 33 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

3.3 The wip_netInitOpts Function

The wip_netInitOpts function initializes the TCP/IP stack with some user
defined options. This function or its variant wip_netInit must be called
first by the application before using any IP communication library service.

The memory is allocated for each predefined socket, network buffer etc.
The memory required for the configuration can be calculated by, the size
of the different elements such as number of sockets, socket buffers etc.
Refer section 3.2 for the size of different elements.

Since memory management is a delicate thing, it is recommended not to
change default values to bigger ones. However, in case customer
application requires such specific needs, it is recommended to subscribe
to error management services through adl_errSubscribe() API : it will let
the application catching memory related traps.

3.3.1 Prototype

s8 wip_netInitOpts (int opt,

 ...);

3.3.2 Parameters

opt:

In: First option in the list of options.

...:

In: This function supports several parameters. These parameters are a list
of options. The list of option names must be followed by option values.
The list must be terminated by WIP_NET_OPT_END. The following options
are currently defined:

Option Value Description Default

WIP_NET_OPT_SOCK_MAX u16 Total number of sockets (UDP
and TCP)

8

WIP_NET_OPT_BUF_MAX u16 Total number of network
buffers.

32

WIP_NET_OPT_IP_ROUTE_MAX u16 Size of IP routing table. 0

WIP_NET_OPT_RSLV_QUERY_MAX u16 Maximum number of DNS
resolver queries

4

WIP_NET_OPT_RSLV_CACHE_MAX u16 Size of DNS resolver cache. 4

WIP_NET_OPT_END none End of option list. -

Initialization of the IP Connectivity Library

The wip_netInitOpts Function

©Confidential Page: 34 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

3.3.3 Returned Values

The function returns

• 0 if the TCP/IP stack has been successfully initialized

• In case of an error, a error code as described below:

Error code Description

WIP_NET_ERR_OPTION Invalid option

WIP_NET_ERR_PARAM Invalid option value

WIP_NET_ERR_NO_MEM Memory allocation error

NOTE

This function returns a negative error code WIP_NET_ERR_NO_MEM, only
if an application is subscribed to adl_errSubscribe() otherwise, the
Wireless CPU® restarts.

Initialization of the IP Connectivity Library

The wip_netExit Function

©Confidential Page: 35 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

3.4 The wip_netExit Function

The wip_netExit function terminates the TCP/IP stack and releases all
resources (memory) allocated by wip_netInit or wip_netInitOpts.

NOTE

All bearers must be closed before calling that function.

3.4.1 Prototype

s8 wip_netExit (void);

3.4.2 Parameters

None

3.4.3 Returned Values

The function always returns 0.

Initialization of the IP Connectivity Library

The wip_netSetOpts Function

©Confidential Page: 36 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

3.5 The wip_netSetOpts Function

The wip_netSetOpts function is used to set TCP/IP protocols options. See
the table in the Parameters section for the available options.

3.5.1 Prototype

s8 wip_netSetOpts (int opt,

 ...);

3.5.2 Parameters

opt:

In: First option in the list of options

...:

In: This function supports several parameters. These parameters are a list
of options. The list of option names must be followed by option values.
The list must be terminated by WIP_NET_OPT_END. The following options
are currently defined:

Option Value Description

WIP_NET_OPT_IP_TTL u8 Default TTL of outgoing datagrams

WIP_NET_OPT_IP_TOS u8 Default TOS of outgoing datagrams

WIP_NET_OPT_IP_FRAG_TIMEO u16 Time to live in seconds of incomplete
fragments

WIP_NET_OPT_TCP_MAXINITWIN u16 Number of segments of initial TCP
window

WIP_NET_OPT_TCP_MIN_MSS u16 Default MSS for off-link connections

WIP_NET_OPT_END none End of option list

Initialization of the IP Connectivity Library

The wip_netSetOpts Function

©Confidential Page: 37 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

3.5.3 Returned Values

The function returns

• 0 on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_NET_ERR_OPTION Invalid option

WIP_NET_ERR_PARAM Invalid option value

Initialization of the IP Connectivity Library

The wip_netGetOpts Function

©Confidential Page: 38 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

3.6 The wip_netGetOpts Function

The wip_netGetOpts function returns the current value of the TCP/IP
protocols options that are passed in the argument list.

3.6.1 Prototype

s8 wip_netGetOpts (int opt,

 ...);

3.6.2 Parameters

For a list of options followed by pointers to options values, see section on
the wip_netSetOpts Function. The list must be terminated by
WIP_NET_OPT_END.

3.6.3 Returned Values

The function returns

• 0 on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_NET_ERR_OPTION Invalid option

WIP_NET_ERR_PARAM Cannot get requested option value for
internal reasons

IP Bearer Management

The wip_netGetOpts Function

©Confidential Page: 39 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4 IP Bearer Management

The IP bearer management API is used to initialize the TCP/IP network
interfaces that work on top of the communication devices provided by
ADL, including, but not limited to:

• UART

• GSM data

• GPRS

The bearer management module is responsible for establishing the IP
connectivity of the TCP/IP stack and configuring all the sub-layers of the
network interface such as PPP, GSM data, and GPRS.

The API is asynchronous, all functions are non-blocking and events are
reported through a callback function.

Some types of bearers (like UART, GSM) support a server mode where the
bearer can wait for incoming connections. Authentication of the caller
must be carried out by the application.

The API is not related to a specific type of bearer, and all bearer specific
settings are handled by the Options mechanism. Support for new types of
bearer devices (like USB, Bluetooth, Ethernet, and so on) can be added by
defining new options, without breaking the API.

Several network interfaces/bearers can be activated at the same time. IP
routing is used for redirecting the data flow through the different
interfaces.

The DNS resolver can also be configured by the bearer management
module if the related information is provided by the server.

IP Bearer Management

State Machine

©Confidential Page: 40 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4.1 State Machine

The bearer management API exports a state machine to an application
that is common for all bearer devices. The following states are defined:

State Description

CLOSED The IP bearer is closed; the device can be used by other
software modules.

DISCONNECTED The IP bearer is opened but not activated.

CONNECTING Connection in progress.

CONNECTED IP layer is configured; bearer can send and receive IP
data

DISCONNECTING Application has requested to disconnect the link;
disconnection in progress.

PEER_DISCONNECTING Peer has requested to disconnect the link or link-layer
has detected a problem; disconnection in progress.

LISTENING Waiting for connection requests/calls (server mode).

PEER_CONNECTING Connection request from peer accepted by application,
connection in progress.

The state transitions are shown in the figure below:

Figure 5 Bearer Management API State Diagram

IP Bearer Management

State Machine

©Confidential Page: 41 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

The transitions are triggered by API function calls from the Open AT®
application or by the events reported by the link layer.

During some transitions, an event is reported to an Open AT® application
through the event notification callback function as follows:

Event Description

WIP_BEV_CONN_FAILED Connection failure, WIP_BOPT_ERROR returns the
cause of the failure

WIP_BEV_IP_CONNECTED IP communication ready

WIP_BEV_IP_DISCONNECTED IP communication terminated, WIP_BOPT_ERROR
returns the cause of the disconnection

WIP_BEV_STOPPED Disconnection completed after wip_bearerStop
was called

When the bearer is in the Listening state, an Open AT® application can
accept or refuse the connection request, through the server event
notification callback as shown below:

Action Description

Accept call The notification callback has accepted the connection

Refuse call The notification callback has refused the connection

IP Bearer Management

Required Header File

©Confidential Page: 42 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4.2 Required Header File

The header file for the IP bearer management is wip_bearer.h.

IP Bearer Management

IP Bearer Management Types

©Confidential Page: 43 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4.3 IP Bearer Management Types

4.3.1 The wip_bearer_t Structure

The wip_bearer_t type is an opaque structure that stores a bearer handle.

4.3.2 The wip_bearerType_e Type

The wip_bearerType_e enumeration stores the type of a bearer.

typedef enum {

 WIP_BEARER_NONE,

 WIP_BEARER_UART_PPP,

 WIP_BEARER_GSM_PPP,

 WIP_BEARER_GPRS

} wip_bearerType_e;

4.3.3 The wip_bearerInfo_t Structure

The wip_bearerInfo_t structure contains the name and type of a bearer.

typedef struct {

 ascii name[WIP_BEARER_NAME_MAX];

 wip_bearerType_e type;

} wip_bearerInfo_t;

4.3.4 The wip_ifindex_t Structure

The wip_ifindex_t type is an opaque structure that stores an interface
index. Interface indexes are used by the TCP/IP stack to reference a
network interface.

IP Bearer Management

The wip_bearerOpen Function

©Confidential Page: 44 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4.4 The wip_bearerOpen Function

The wip_bearerOpen function attaches a bearer device to a network
interface. Depending on the type of bearer, the network interface will
implement PPP or will work in packet mode. The bearer is identified by a
string. The caller must specify an event handler callback and a context to
process the bearer-related asynchronous events.

The bearer is initialized with a default configuration that can be changed
by wip_bearerSetOpts. The bearer and its associated network must be
activated by wip_bearerStart or wip_bearerStartServer in order to enable
IP communication.

4.4.1 Prototype

s8 wip_bearerOpen (wip_bearer_t *br,

 const ascii *device,

 wip_bearerHandler_f brHdlr,

 void *context);

4.4.2 Parameters

br:

Out: Filled with bearer handle if the open function was successful.

context:

In: Pointer to application defined context that is passed to the event
handler callback.

device:

In: Bearer name, the currently supported devices are listed below:

Device Description

UART1 UART 1, PPP mode

UART1x DLC 'x' on UART 1, 'x' from 1 to 4, PPP mode

UART2 UART 2, PPP mode

UART2x DLC 'x' on UART 2, 'x' from 1 to 4, PPP mode

GSM GSM data, PPP mode

GPRS GPRS, packet mode

IP Bearer Management

The wip_bearerOpen Function

©Confidential Page: 45 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

NOTE

If one physical UART is multiplexed into DLCs (DLC1, DLC2, DLC3,
DLC4), only one among these DLCs can be used for PPP over session.

brHdlr:

In: Event handler callback, the function has the following prototype:

typedef void (*wip_bearerHandler_f) (wip_bearer_t br,

 s8 event,

 void *context);

br:

In: Bearer handle

event:

In: Event name, the following events are currently defined:

Event Description

WIP_BEV_CONN_FAILED Connection failure, WIP_BOPT_ERROR returns the
cause of the failure

WIP_BEV_IP_CONNECTED IP communication ready

WIP_BEV_IP_DISCONNECTED IP communication terminated, WIP_BOPT_ERROR
returns the cause of the disconnection

WIP_BEV_STOPPED Disconnection completed after wip_bearerStop
was called

context:

In: Pointer to application context

Returned Values:

None

4.4.3 Returned Values

The function returns

• 0 on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_BERR_NO_DEV The device does not exist

IP Bearer Management

The wip_bearerOpen Function

©Confidential Page: 46 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Error Code Description

WIP_BERR_ALREADY The device is already opened

WIP_BERR_NO_IF The network interface is not available

WIP_BERR_NO_HDL No free handle

NOTE

WIP_BEV_DIAL_CALL and WIP_BEV_PPP_AUTH_PEER are to be used
only in handler installed by wip_bearerStartServer; they have no
meaning outside that context.

IP Bearer Management

The wip_bearerClose Function

©Confidential Page: 47 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4.5 The wip_bearerClose Function

The wip_bearerClose function detaches the bearer from the network
interface and releases all associated resources. If the bearer is not
stopped the underlying connection is terminated but no event is
generated. After the call, the associated TCP/IP network is closed and it
will be available for another bearer association.

4.5.1 Prototype

s8 wip_bearerClose (wip_bearer_t br);

4.5.2 Parameters

br:

In: Bearer handle

4.5.3 Returned Values

The function returns

• 0 on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_BERR_BAD_HDL Invalid handle

WIP_BERR_BAD_STATE Bearer was not stopped before closing

IP Bearer Management

The wip_bearerSetOpts Function

©Confidential Page: 48 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4.6 The wip_bearerSetOpts Function

The wip_bearerSetOpts function sets configuration options of a bearer.

NOTE

It should be called before wip_bearerStart to setup the connection
parameters

4.6.1 Prototype

s8 wip_bearerSetOpts (wip_bearer_t br,

 int opt,

 ...);

4.6.2 Parameters

br:

In: Bearer handle

opt:

In: First option in the list of options

...:

In: List of option names followed by option values. The list must be
terminated by WIP_BOPT_END.

The following options are currently defined:

Option Value Description

WIP_BOPT_NAME ascii Name of bearer device (get
only)

WIP_BOPT_TYPE wip_bearerType_e Type of bearer (get only)

WIP_BOPT_IFINDEX wip_ifindex_t Index of network interface
(get only)

WIP_BOPT_ERROR s8 Error code indicating the
cause of the disconnection
(get only)

WIP_BOPT_RESTART bool Automatically restart server
after connection is
terminated

WIP_BOPT_END none End of option list

IP Bearer Management

The wip_bearerSetOpts Function

©Confidential Page: 49 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Value Description

WIP_BOPT_LOGIN ascii Username

WIP_BOPT_PASSWORD ascii Password

Dialing Options

WIP_BOPT_DIAL_PHONENB ascii Phone number

WIP_BOPT_DIAL_RINGCOUNT u16 Number of rings to wait
before sending the
WIP_BEV_DIAL_CALL event

WIP_BOPT_DIAL_MSNULLMODEM bool Enable MS-Windows null-
modem protocol
("CLIENT"/"SERVER"
handshake)

WIP_BOPT_DIAL_SPEED u32 Speed (in bits per second) of
the connection (get only)

PPP Options

WIP_BOPT_PPP_PAP bool Allow PAP authentication

WIP_BOPT_PPP_CHAP bool Allow CHAP authentication

WIP_BOPT_PPP_MSCHAP1 bool Allow MSCHAPv1
authentication

WIP_BOPT_PPP_MSCHAP2 bool Allow MSCHAPv2
authentication

WIP_BOPT_PPP_ECHO bool Send LCP echo requests to
check if peer is alive

GPRS options

WIP_BOPT_GPRS_APN ascii Address of GGSN

WIP_BOPT_GPRS_CID u8 Cid of the PDP context

WIP_BOPT_GPRS_HEADERCOMP bool Enable PDP header
compression

WIP_BOPT_GPRS_DATACOMP bool Enable PDP data
compression

IP Options

WIP_BOPT_IP_ADDR wip_in_addr_t Local IP address

WIP_BOPT_IP_DST_ADDR wip_in_addr_t Destination IP address

WIP_BOPT_IP_DNS1 wip_in_addr_t Address of primary DNS
server

IP Bearer Management

The wip_bearerSetOpts Function

©Confidential Page: 50 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Value Description

WIP_BOPT_IP_DNS2 wip_in_addr_t Address of secondary DNS
server

WIP_BOPT_IP_SETDNS bool Configure DNS resolver
when connection is
established

WIP_BOPT_IP_SETGW bool Set interface as default
gateway when connection
is established

NOTE

The options WIP_BOPT_IP_DST_ADDR, WIP_BOPT_IP_DNS1 and
WIP_BOPT_IP_DNS2 are “read only” for GPRS/GSM client.

4.6.3 Returned Values

0 on success

The function returns

•

• In case of an error, a negative error code as described below:

Error Code Description

WIP_BERR_BAD_HDL Invalid handle

WIP_BERR_OPTION Invalid option

WIP_BERR_PARAM Invalid option value

IP Bearer Management

The wip_bearerGetOpts Function

©Confidential Page: 51 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4.7 The wip_bearerGetOpts Function

The wip_bearerGetOpts function retrieves configuration options and
status variables of a bearer. It can be called after the connection is
established to get the configuration parameters given by the peer (IP and
DNS server addresses, link specific parameters, and so on).

4.7.1 Prototype

s8 wip_bearerGetOpts (wip_bearer_t br,

 int opt,

 ...);

4.7.2 Parameters

br:

In: Bearer handle

opt:

In: First option in the list of options

...:

In/Out: For the list of options followed by pointers to option values, see
section on the wip_bearerSetOpts Function.

4.7.3 Returned Values

The function returns

• 0 on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_BERR_BAD_HDL Invalid handle

WIP_BERR_OPTION Invalid option

IP Bearer Management

The wip_bearerStart Function

©Confidential Page: 52 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4.8 The wip_bearerStart Function

The wip_bearerStart function establishes the bearer connection.
Depending on the type of bearer the following operations are made:

UART Device

• start the window's null-modem protocol handshake (if enabled)

• start PPP in client mode, IP connectivity is established by the PPP
interface

GSM Device

• setup GSM data connection

• start PPP in client mode, IP connectivity is established by the PPP
interface

GPRS Device

• set up GPRS connection

• configure IP address and DNS resolver with information returned
by GGSN and enable IP communication on the interface

NOTE

There is no mechanism that deals with actions conflicts on bearer
management application side (ADL or AT parser in firmware). E.g.
ATH from external terminal stops the bearer link for GSM/GPRS
bearer. ATDxxx; will stop the GPRS bearer etc.

4.8.1 Prototype

s8 wip_bearerStart (wip_bearer_t br);

4.8.2 Parameters

br:

In: Bearer handle

4.8.3 Events

After calling wip_bearerStart, the following events can be received:

Event Description

WIP_BEV_IP_CONNECTED The connection is completed

WIP_BEV_IP_DISCONNECTED Peer has disconnected the link, or a link failure has
been detected, call wip_bearerGetOpts with
WIP_BOPT_ERROR option to get the cause of
disconnection

IP Bearer Management

The wip_bearerStart Function

©Confidential Page: 53 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

WIP_BEV_IP_DISCONNECTED The connection has failed to complete, call
wip_bearerGetOpts with WIP_BOPT_ERROR option
to get the cause of failure

After a connection failure, the WIP_BOPT_ERROR option can returns one
of the following error codes:

Error Description

WIP_BERR_LINE_BUSY Line busy

WIP_BERR_NO_ANSWER No answer

WIP_BERR_NO_CARRIER No carrier

WIP_BERR_NO_SIM No SIM card inserted

WIP_BERR_PIN_NOT_READY PIN code not entered

WIP_BERR_GPRS_FAILED GPRS setup failure

WIP_BERR_PPP_LCP_FAILED LCP negotiation failure

WIP_BERR_PPP_AUTH_FAILED PPP authentication failure

WIP_BERR_PPP_IPCP_FAILED IPCP negotiation failure

WIP_BERR_PPP_LINK_FAILED PPP peer not responding to echo requests

WIP_BERR_PPP_TERM_REQ PPP session terminated by peer

WIP_BERR_CALL_REFUSED Incoming call refused

4.8.4 Returned Values

The function returns

• 0 on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_BERR_OK_INPROGRESS Connection started, an event will be sent after
completion

WIP_BERR_BAD_HDL Invalid handle

WIP_BERR_BAD_STATE The bearer is not stopped

WIP_BERR_DEV Error from link layer initialization

IP Bearer Management

The wip_bearerAnswer Function

©Confidential Page: 54 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4.9 The wip_bearerAnswer Function

The wip_bearerAnswer function is used to answer an incoming phone
call and start the bearer in the passive (server) mode. This function is only
supported by the GSM bearer.

4.9.1 Prototype

s8 wip_bearerAnswer (wip_bearer_t br,

 wip_bearerServerHandler_f brSrvHdlr,

 void *context);

4.9.2 Parameters

br:

In: Bearer handle

brSrvHdlr:

In: Server event handler callback. The brSrvHdlr can only handle
WIP_BEV_PPP_AUTH_PEER kind of event. Refer section 4.10.2 for details
on the call back function prototype.

context:

In: Pointer to application context

4.9.3 Events

See event list of wip_bearerStart

4.9.4 Returned Values

The function returns

• 0 on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_BERR_BAD_HDL Invalid handle

WIP_BERR_BAD_STATE Bearer is not stopped

WIP_BERR_NOT_SUPPORTED Not a GSM bearer

WIP_BERR_DEV Error from link layer initialization

IP Bearer Management

The wip_bearerStartServer Function

©Confidential Page: 55 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4.10 The wip_bearerStartServer Function

The wip_bearerStartServer function starts the bearer in passive (server)
mode. The bearer waits for incoming connection requests. The
WIP_BEV_DIAL_CALL event is generated when a call is received, the
server handler callback can accept or refuse the call. If the call is
accepted, the protocol layers configuration is started.

UART Device

• wait for incoming PPP connection on the UART port
(WIP_BEV_PPP_AUTH_PEER is received)

GSM Device

• first wait for incoming GSM call in data mode
(WIP_BEV_DIAL_CALL is received => accepting the call will
establish the radio link).

• then wait for incoming PPP connection on that radio link
(WIP_BEV_PPP_AUTH_PEER is received)

GPRS Device

• this function is not supported by the GPRS bearer

4.10.1 Prototype

s8 wip_bearerStartServer (wip_bearer_t br,

 wip_bearerServerHandler_f brSrvHdlr,

 void *context);

4.10.2 Parameters

br:

In: Bearer handle

brSrvHdlr:

In: Server event handler callback, the function has the following
prototype:

typedef s8 (*wip_bearerServerHandler_f) (wip_bearer_t br

 wip_bearerServerEvent_t *event,

 void *context);

IP Bearer Management

The wip_bearerStartServer Function

©Confidential Page: 56 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

event:

In: Event data, the structure bearerServerEvent_t has the following
definition:

typedef struct {

 s8 kind;

 union wip_bearerServerEventContent_t {

 struct wip_bearerServerEventContentDialCall_t {

 ascii *phonenb;

 } dial_call;

 struct wip_bearerServerEventContentPppAuth_t {

 ascii *user;

 int userlen;

 ascii *secret;

 int secretlen;

 } ppp_auth;

 } content;

} wip_bearerServerEvent_t;

The structure members are described below.

kind:

In: Event name. This contains the following event names:

Kind Description

WIP_BEV_DIAL_CALL Signals an incoming call. When this event occurs the
structure dial_call should be used to extract the
parameters. This structure contains the phone number of
caller. The callback function must return a positive value
to accept the call.

WIP_BEV_PPP_AUTH_PEER Signals a PPP peer authentication request. When this
event occurs the structure ppp_auth should be used to
extract the parameters. This structure contains the user
name provided by the peer. The callback function must
return a positive value if the user name is correct, and fill
the secret buffer with the secret data (password)
associated with the user. The bearer will then check if
the secret data given by the peer is correct.

phonenb:

IP Bearer Management

The wip_bearerStartServer Function

©Confidential Page: 57 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Phone number of the caller

user:

User name given by caller

userlen:

Length of user name

secret:

Pointer to a buffer to be filled with the secret data of the user

secretlen:

Initialized with the maximum allowed length of the secret, must contains
the length of the secret after the call.

context:

In: Pointer to application context.

Returned Values:

A positive value is returned to accept the incoming connection, else the
call is rejected.

4.10.3 Events

See events of wip_bearerStart.

4.10.4 Returned Values

The function returns

• 0 on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_BERR_BAD_HDL Invalid handle

WIP_BERR_BAD_STATE The bearer is not stopped

WIP_BERR_NOT_SUPPORTED Bearer does not support passive mode

WIP_BERR_DEV Error from link layer initialization

IP Bearer Management

The wip_bearerStop Function

©Confidential Page: 58 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4.11 The wip_bearerStop Function

The wip_bearerStop function terminates connection on a bearer. If the
connection is still in progress, the connection is aborted. The following
operations are made:

• the network interface is closed, and in case of PPP interface, the
PPP connection is gradually stopped

• the link connection (GSM, GPRS) is terminated

• the WIP_BEV_STOPPED event is sent after all layers are properly
shut down

• If the bearer is already stopped, then the function has no effect.

4.11.1 Prototype

s8 wip_bearerStop (wip_bearer_t br);

4.11.2 Parameters

br:

In: Bearer handle

4.11.3 Events

After calling wip_bearerStop, the following events can be received:

Event Description

WIP_BEV_STOPPED The bearer is disconnected

4.11.4 Returned Values

This function returns

• 0 on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_BERR_OK_INPROGRESS Disconnection in progress, a
WIP_BEV_STOPPED event will be sent
after completion

WIP_BERR_BAD_HDL Invalid handle

IP Bearer Management

The wip_bearerGetList Function

©Confidential Page: 59 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4.12 The wip_bearerGetList Function

The wip_bearerGetList function returns the list of all available bearers.
This function always returns the same values for a given platform.

4.12.1 Prototype

wip_bearerInfo_t *wip_bearerGetList (void);

4.12.2 Parameters

None

4.12.3 Returned Values

The function returns

• an array of bearerInfo_t on success

• NULL pointer is returned on error. The end of the array is indicated
by an entry with WIP_BEARER_NONE type and "" name. The
memory used by the array is allocated dynamically and must be
freed by calling wip_bearerFreeList

NOTE

The list of available bearers is not dynamically updated by other ADL
calls. E.g. if customer application start a GSM call independently of
WIP API, then wip_bearerGetList will still describe GSM bearer as
available even if it is not the case at the moment. Availability of a
bearer is only tested when the bearer is started by calling
wip_bearerStart, wip_bearerAnswer or wip_bearerStartServer

IP Bearer Management

The wip_bearerFreeList Function

©Confidential Page: 60 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

4.13 The wip_bearerFreeList Function

The wip_bearerFreeList function frees the memory previously allocated by
wip_bearerGetList.

4.13.1 Prototype

void wip_bearerFreeList (wip_bearerInfo_t *binfo);

4.13.2 Parameters

binfo:

In: Pointer that was returned by wip_bearerGetlist

4.13.3 Returned Values

None

Internet Protocol Support Library

The wip_bearerFreeList Function

©Confidential Page: 61 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

5 Internet Protocol Support Library

The Internet Protocol support library provides support for internet
addresses.

Internet Protocol Support Library

Required Header File

©Confidential Page: 62 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

5.1 Required Header File

The header file for the IP Support Library related functions is wip_inet.h.

Internet Protocol Support Library

The wip_in_addr_t Structure

©Confidential Page: 63 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

5.2 The wip_in_addr_t Structure

The wip_in_addr_t type stores a 32-bit IPv4 address in network-byte
order.

typedef u32 wip_in_addr_t;

Internet Protocol Support Library

The wip_inet_aton Function

©Confidential Page: 64 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

5.3 The wip_inet_aton Function

The wip_inet_aton function converts an internet address in standard dot
notation to a wip_in_addr_t type.

5.3.1 Prototype

bool wip_inet_aton (const ascii *str,

 wip_in_addr_t *addr);

5.3.2 Parameters

str:

In: Null terminated string that contains the IP address to convert in dot
notation

addr:

Out: Filled with converted IP address

5.3.3 Returned Values

The function returns

• TRUE if the provided string contains a valid IP address

• FALSE if it does not contain a valid IP address

Internet Protocol Support Library

The wip_inet_ntoa Function

©Confidential Page: 65 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

5.4 The wip_inet_ntoa Function

The wip_inet_ntoa function converts an internet address to a string in the
standard dot notation.

5.4.1 Prototype

bool wip_inet_ntoa (wip_in_addr_t addr,

 ascii *buf,

 u16 buflen);

5.4.2 Parameters

addr:

In: IP address

buf:

In: Pointer to destination buffer

buflen:

In: Length of destination buffer

5.4.3 Returned Values

The function returns

• TRUE if the provided buffer is large enough to store the result
string

• else FALSE is returned

Socket Layer

Common Types

©Confidential Page: 66 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6 Socket Layer

6.1 Common Types

6.1.1 Channels

Channels are opaque to the user and must be manipulated only through
API functions.

typedef struct channel *wip_channel_t;

6.1.2 Event Structure

A channel event is composed of a constant indicating the kind of event
which happened, as described by the kind field. Every kind of event
corresponds to a specific set of data. These specific data types are
gathered in specific structures, which in turn are included in the
channelEvent structure through a union content. If event.kind is
WIP_CEV_READ, only the event.content.read union field is relevant. If kind
is WIP_CEV_WRITE, event.content.write is relevant;
WIP_CEV_PEER_CLOSE corresponds to event.content.peer_close,
WIP_CEV_ERROR to event.content.error, and WIP_CEV_PING to
event.content.ping.

typedef struct wip_event_t {

 enum wip_event_kind_t {

 WIP_CEV_DONE,

 WIP_CEV_ERROR,

 WIP_CEV_OPEN,

 WIP_CEV_PEER_CLOSE,

 WIP_CEV_PING,

 WIP_CEV_READ,

 WIP_CEV_WRITE, /*File-handling related events*/

 WIP_CEV_CLOSE_DIR,

 WIP_CEV_READ_DIR,

 WIP_CEV_REWIND_DIR,

 WIP_CEV_LAST = WIP_CEV_REWIND_DIR

 } kind;

 wip_channel_t channel;

 union wip_event_content_t {

Socket Layer

Common Types

©Confidential Page: 67 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

 struct wip_event_content_read_t {

 u32 readable; /* how many bytes can be read */

 } read;

 struct wip_event_content_write_t {

 u32 writable; /* how many bytes can be written */

 } write

 struct wip_event_content_ping_t {

 int packet_idx; /* Index of the packet in the sent
sequence*/

 u32 response_time; /* Time taken by the echo to come back, in
ms. */

 bool timeout; /* Did the echo take too long to come back?
If timeout is true, response_time is
meaningless (and set to 0) */

 } ping;

 struct wip_event_content_error_t {

 wip_error_t errnum; /* Error */

 } error;

 struct wip_event_content_done_t {

 int result;

 int aux;

 } done

 } content;

} wip_event_t;

6.1.3 Opaque Channel Type

Channels are not to be inspected directly by the user, who might only
interact with them through API functions. The corresponding type is
therefore opaque to them.

typedef struct channel *wip_channel_t;

/* The [wip_channel_struct_t] structure is not declared in the public API.

The user can only work with pointers as abstract datatypes.*/

Socket Layer

Common Types

©Confidential Page: 68 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.1.4 Event Handler Callback wip_eventHandler_f

typedef void (*wip_eventHandler_f) (wip_event_t *ev,

 void *ctx);

When a channel is created, a callback function must be passed to react to
channel events. This callback type is wip_eventHandler_f, and takes the
following as parameters:

ev: The structure describing the event

ctx: A pointer to user data which is passed at channel creation time. This
allows the user to associate connection specific data to the channel. If not
required it will be set to NULL.

6.1.5 Options

Here is a table which sums up the options that can be passed to channels
through the “Opts” functions, together with their meaning, and the type
of parameter(s) they take. For instance, WIP_COPT_PORT takes an s16 as
a parameter. This means that when used in an option-setting context,
WIP_COPT_PORT is to be followed by an s16 parameter, then by the next
option (or WIP_COPT_END). When used in an option-getting context, it
will be followed by a pointer to an integer, where the port number will be
written.

Option Description Set Type Get Type

WIP_COPT_END Indicates that the last
option of the list is
reached

none <none>

WIP_COPT_KEEPALIVE Sends a NOOP
command every n tenth
of seconds, so that the
server and any NAT on
the way won't shut
down the connection

u32 n u32 n

WIP_COPT_SND_BUFSIZE Size of the emission
buffer associated with
a socket

u32 u32

WIP_COPT_RCV_BUFSIZE Size of the reception
buffer associated with
a socket

u32 u32

Socket Layer

Common Types

©Confidential Page: 69 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Description Set Type Get Type

WIP_COPT_SND_LOWAT Minimum amount of
available space that
must be available in the
emission buffer before
triggering a
WIP_CEV_WRITE event.

u32 u32

WIP_COPT_RCV_LOWAT Minimum amount of
available space that
must be available in the
reception buffer before
triggering a
WIP_CEV_READ event

u32 u32

WIP_COPT_RCV_TIMEOUT For PING channels,
timeout for ECHO
requests.

u32 u32

WIP_COPT_ERROR Number of the last
error experienced by
that socket

none s32

WIP_COPT_NREAD Number of bytes that
can currently be read
on that socket.

none u32

WIP_COPT_NWRITE Number of bytes that
can currently be
written on that socket.
For a PING, size of the
request (default=20)

u32 u32

WIP_COPT_CHECKSUM Whether the checksum
control must be
performed by an UDP
socket.

bool bool

Socket Layer

Common Types

©Confidential Page: 70 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Description Set Type Get Type

WIP_COPT_NODELAY When set to TRUE, TCP
packets are sent
immediately, even if the
buffer is not full
enough

When set to FALSE,
the packets will be sent
either,

a) by combining several
small packets into a
bigger packet

b) when the data is
ready to send and the
stack is idle

Note: Data has to be
buffered and managed
by the user application.
There is no provision in
WIP API’s to wait for
data block to be fully
filled before sending it.

bool bool

WIP_COPT_MAXSEG Maximum size of TCP
packets

u32 u32

WIP_COPT_TOS Type of Service (cf. RFC
791)

u8 u8

WIP_COPT_TTL Time-To-Live for
packets

u8 u8

WIP_COPT_DONTFRAG If set. UDP datagrams
are not allowed to be
fragmented when
going through the
network.

bool bool

WIP_COPT_PEEK When true, the
message is not deleted
from the buffer after
reading, so that it can
be read again.

bool none

WIP_COPT_PORT Port occupied by this
socket.

u16 u16

Socket Layer

Common Types

©Confidential Page: 71 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Description Set Type Get Type

WIP_COPT_STRADDR Local address of the
socket.

ascii ascii *buf,

u32 buf_len

WIP_COPT_ADDR Local address of the
socket, as a 32 bits
integer.

wip_in_addr_t wip_in_addr_t*

WIP_COPT_PEER_PORT Port of the peer socket. u16 u16

WIP_COPT_PEER_STRADDR Address of the peer
socket. If set to NULL
on a pseudo-connected
UDP socket, remove
the connection

ascii ascii *buf,

u32 buf_len

WIP_COPT_PEER_ADDR Address of the peer
socket, as a 32 bits
integer.

wip_in_addr_t wip_in_addr_t*

WIP_COPT_TRUNCATE Whether an UDP read
operation truncated the
received data, due to a
lack of buffer space.

bool bool

WIP_COPT_REPEAT Number of PING echo
requests to send.

s32 s32

WIP_COPT_INTERVAL Time between two
PING echo requests, in
ms.

u32 u32

WIP_COPT_SUPPORT_READ Fails if the channel
does not support
wip_read() operations.
If supported, does
nothing.

none none

WIP_COPT_SUPPORT_WRITE Fails if the channel
does not support
wip_write() operations.
If supported, does
nothing.

none none

NOTE

It does make sense to put zero sized buffers. For instance, if user knows
that the socket will be used only for sending data and never for reading
data, then read buffer size can be set to zero to save some memory.

Socket Layer

Common Channel Functions

©Confidential Page: 72 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.2 Common Channel Functions

This section describes common channel functions that can be used for
various purposes such as to close, read or write from a channel.

6.2.1 The wip_close Function

The wip_close function closes a channel.

NOTE

The actual resource release does not happen immediately. Instead, the
channel is put on a “closing queue” and will be closed at a safe time.
This way, the user can request to close a channel at any time – even
while handling an event triggered by the channel that the user wants to
close.

6.2.1.1 Prototype

int wip_close (wip_channel_t c);

6.2.1.2 Parameters

c:

In: The channel that must be closed.

6.2.1.3 Returned Values

This function returns

• 0 on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_CERR_MEMORY Insufficient memory to queue the channel

Socket Layer

Common Channel Functions

©Confidential Page: 73 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.2.2 The wip_read Function

The wip_read function is used to read from a channel. For more details
see section on Options.

6.2.2.1 Prototype

int wip_read (wip_channel_t c,

 void *buffer,

 u32 buf_len);

6.2.2.2 Parameters

c:

In: The channel to read from

buffer:

Out: Pointer to the buffer where read data must be put

buf_len:

In: Size of the buffer

6.2.2.3 Returned Values

This function returns

• number of bytes actually read on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_CERR_CSTATE The channel is not ready to read data (still in
initialization, or is already closed).

WIP_CERR_NOT_SUPPORTED This channel does not support data reading.

Socket Layer

Common Channel Functions

©Confidential Page: 74 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.2.3 The wip_readOpts Function

The wip_readOpts function is used to read from a channel. For more
details see section on Options.

6.2.3.1 Prototype

int wip_readOpts (wip_channel_t c,

 void *buffer,

 u32 buf_len,

 ...);

6.2.3.2 Parameters

c:

In: The channel to read from

buffer:

Out: Pointer to the buffer where read data must be put

buf_len:

In: Size of the buffer

...:

List of option names followed by option values. The list must be
terminated by WIP_COPT_END. Supported options depend on the kind of
channel and are mentioned in sections 6.3.6 and 6.5.9.

6.2.3.3 Returned Values

This function returns:

• number of bytes actually read

• In case of an error, a negative error code as described below:

Error Code Description

WIP_CERR_CSTATE The channel is not ready to read data (still in
initialization, or is already closed)

WIP_CERR_NOT_SUPPORTED This channel does not support data reading, or it has
been provided with an option it does not support.

WIP_CERR_INVALID Some option has been passed with an invalid value.

Socket Layer

Common Channel Functions

©Confidential Page: 75 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.2.4 The wip_write Function

The wip_write function is used to write to a channel. For more details see
section on Options.

6.2.4.1 Prototype

int wip_write (wip_channel_t c,

 void *buffer,

 u32 buf_len);

6.2.4.2 Parameters

c:

In: The channel to write to

buffer:

Out: Pointer to the buffer where data to write is to be found

buf_len:

In: Size of the buffer

6.2.4.3 Returned Values

This function returns

• number of bytes actually written

• In case of an error, a negative error code as described below:

Error Code Description

WIP_CERR_CSTATE The channel is not ready to write data (still
in initialization, or is already closed).

WIP_CERR_NOT_SUPPORTED This channel does not support data writing.

Socket Layer

Common Channel Functions

©Confidential Page: 76 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.2.5 The wip_writeOpts Function

The wip_writeOpts function is used to write to a channel. For more
details see section on Options.

6.2.5.1 Prototype

int wip_writeOpts (wip_channel_t c,

 void *buffer,

 u32 buf_len,

 ...);

6.2.5.2 Parameters

c:

In: The channel to write to

buffer:

Out: Pointer to the buffer where data to be written can be found

buf_len:

In: Size of the buffer

...:

List of option names followed by option values. The list must be
terminated by WIP_COPT_END. Supported options depend on the kind of
channel and are mentioned in sections 6.3.7 and 6.5.10.

6.2.5.3 Returned Values

This function returns

• number of bytes actually written

• In case of an error, a negative error code as described below:

Error Code Description

WIP_CERR_CSTATE The channel is not ready to write data (still
in initialization, or is already closed)

WIP_CERR_NOT_SUPPORTED This channel does not support data writing,
or it has been provided with an option it
does not support.

WIP_CERR_INVALID Some option has been passed with an
invalid value.

Socket Layer

Common Channel Functions

©Confidential Page: 77 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.2.6 The wip_getOpts Function

The wip_getOpts function is used to get options from a channel. For more
details see section on Options.

6.2.6.1 Prototype

int wip_getOpts (wip_channel_t c,

 ...);

6.2.6.2 Parameters

c:

In: The channel to get options from

...:

List of option names followed by option values. The list must be
terminated by WIP_COPT_END. Supported options depend on the kind of
channel and are mentioned in sections 6.3.4, 6.4.3, 6.5.7, 6.6.3, 8.5,
9.15, 10.3.2 and 11.2.3.

6.2.6.3 Returned Values

This function returns

• zero on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_CERR_NOT_SUPPORTED The function has been provided with an option it does
not support.

WIP_CERR_INVALID Some option has been passed with an invalid value.

WIP_CERR_CSTATE The channel is not ready to get options (still in
initialization, or is already closed)

Socket Layer

Common Channel Functions

©Confidential Page: 78 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.2.7 The wip_setOpts Function

The wip_setOpts function is used to set options for a channel. For more
details see section on Options.

6.2.7.1 Prototype

int wip_setOpts (wip_channel_t c,

 ...);

6.2.7.2 Parameters

c:

In: The channel in which options will be set

...:

List of option names followed by option values. The list must be
terminated by WIP_COPT_END. Supported options depend on the kind of
channel and are mentioned in sections 6.3.5, 6.4.4, 6.5.8, 6.6.4, 8.4 and
9.14.

6.2.7.3 Returned Values

This function returns

• zero on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_CERR_NOT_SUPPORTED The function has been provided with an
option it does not support.

WIP_CERR_INVALID Some option has been passed with an invalid
value.

Socket Layer

Common Channel Functions

©Confidential Page: 79 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.2.8 The wip_setCtx Function

The wip_setCtx function is used to change the context associated with
the event handler of a channel.

6.2.8.1 Prototype

void wip_setCtx (wip_channel_t c,

 void *ctx);

6.2.8.2 Parameters

c:

The channel for which the event context must be changed

ctx:

The new context

6.2.8.3 Returned Values

None

Socket Layer

Common Channel Functions

©Confidential Page: 80 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.2.9 The wip_getState Function

Channel creation might rely on asynchronous processes such as the
completion of DNS query. There is therefore no guarantee that
immediately after the wip_xxxCreate function returns, the channel is
ready for read/write operations. Moreover, some events, especially errors,
can put a channel in an unusable state. These different states are
summarized by the wip_cstate_t enumeration, and the current state of a
channel can be read with wip_getState.

6.2.9.1 Prototype

wip_cstate_t wip_getState (wip_channel_t c);

6.2.9.2 Parameter

c:

The channel for which the state must be determined

6.2.9.3 Returned Values

This function returns the state of c as one of the values below:

typedef enum wip_cstate_t {

 WIP_CSTATE_BUSY, /* some configuration is happening,
eventually the state will become
READY*/

 WIP_CSTATE_READY, /* Ready to support Read/Write
operations.*/

 WIP_CSTATE_TO_CLOSE, /* Channel is broken; the only thing to
do with is to close it.*/

 WIP_CSTATE_LAST=WIP_CSTATE_TO_CLOSE

} wip_cstate_t;

Socket Layer

UDP: UDP Sockets

©Confidential Page: 81 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.3 UDP: UDP Sockets

UDP sockets are not connected; they do not have a peer socket with
which they exclusively exchange data. However, as in POSIX sockets, we
offer a pseudo-connected optional API. The user can specify a destination
socket, to which every outbound packet will be sent through a given
socket, until further notice. If no pseudo-connection is established, it is
mandatory to specify the destination address and port for every write
operation, through WIP_COPT_XXX options; therefore, a call to wip_write()
on an unconnected UDP will fail.

6.3.1 State Charts

The functional behavior of UDP sockets is formalized on the following
statechart. The green background label represents events, and the blue
background represents functions called by the user.

Figure 6 UDP Channel State Diagram

Socket Layer

UDP: UDP Sockets

©Confidential Page: 82 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

A more intuitive example of temporal dataflow, inferred from this state
diagram is given below. It shows typical UDP channels opening, data
transfers between sockets, and channel closing.

Figure 7 UDP Channel Temporal Diagram

Socket Layer

UDP: UDP Sockets

©Confidential Page: 83 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.3.2 The wip_UDPCreate Function

The wip_UDPCreate function creates a channel encapsulating an UDP
socket.

6.3.2.1 Prototype

wip_channel_t wip_UDPCreate (wip_eventHandler_f handler,

 void *ctx);

6.3.2.2 Parameters

handler:

The call back handler which receives the network events related to the
UDP socket. Possible events kinds are WIP_CEV_READ, WIP_CEV_WRITE
and WIP_CEV_ERROR. If set to NULL, all the events received in this socket
will be discarded.

ctx:

User data to be passed to the event handler every time it is called

6.3.2.3 Returned Values

This function returns

• the created channel

• NULL on error

Socket Layer

UDP: UDP Sockets

©Confidential Page: 84 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.3.3 The wip_UDPCreateOpts Function

The wip_UDPCreateOpts function creates a channel encapsulating an
UDP socket, with advanced options.

6.3.3.1 Prototype

wip_channel_t wip_UDPCreateOpts (wip_eventHandler_f handler,

 void *ctx,

 ...);

6.3.3.2 Parameters

handler:

The call back handler which receives the network events related to the
UDP socket. Possible event kinds are WIP_CEV_READ, WIP_CEV_WRITE
and WIP_CEV_ERROR. If set to NULL, all events received in this socket will
be discarded.

ctx:

User data to be passed to the event handler every time it is called

...:

List of option names followed by option values. The list must be
terminated by WIP_COPT_END. The supported options are:

Option Value Description

WIP_COPT_SND_BUFSIZE u32 Size of the emission buffer associated
with a socket.

WIP_COPT_RCV_BUFSIZE u32 Size of the reception buffer associated
with a socket.

WIP_COPT_CHECKSUM bool Whether the checksum control must
be performed by an UDP socket.

WIP_COPT_TOS u8 Type of Service (cf. RFC 791)

WIP_COPT_TTL u8 Time-To-Live for packets.

WIP_COPT_DONTFRAG bool If set. UDP datagrams are not allowed
to be fragmented when going
through the network.

WIP_COPT_PORT u16 Port occupied by this socket.

WIP_COPT_STRADDR ascii* Local address of the socket.

WIP_COPT_ADDR wip_in_addr_t Local address of the socket.

Socket Layer

UDP: UDP Sockets

©Confidential Page: 85 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Value Description

WIP_COPT_PEER_PORT u16 Port of the peer socket.

WIP_COPT_PEER_STRADDR ascii* Address of the peer socket. If set to
NULL on a pseudo-connected UDP
socket, remove the connection.

WIP_COPT_PEER_ADDR wip_in_addr_t Address of the peer socket.

6.3.3.3 Returned Values

This function returns

• the created channel

• NULL on error

Socket Layer

UDP: UDP Sockets

©Confidential Page: 86 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.3.4 The wip_getOpts Function

The options supported by the wip_getOpts function, applied to a UDP are:

Option Value Description

WIP_COPT_END none End of the option

WIP_COPT_SND_BUFSIZE u32* Size of the emission buffer
associated with a socket

WIP_COPT_RCV_BUFSIZE u32* Size of the reception buffer
associated with a socket

WIP_COPT_ERROR s32* Number of the last error
experienced by that socket.

WIP_COPT_NREAD u32* Number of bytes that can
currently be read on that
socket.

WIP_COPT_NWRITE u32* Number of bytes that can
currently be written on that
socket. For a PING, size of the
request (default=20)

WIP_COPT_CHECKSUM bool* Whether the checksum control
must be performed by an UDP
socket.

WIP_COPT_TOS u8* Type of Service (cf. RFC 791)

WIP_COPT_TTL u8* Time-To-Live for packets.

WIP_COPT_DONTFRAG bool* If set. UDP datagrams are not
allowed to be fragmented
when going through the
network.

WIP_COPT_PORT u16* Port occupied by this socket.

WIP_COPT_STRADDR ascii* buffer,
u32 buf_len

Local address of the socket.

WIP_COPT_ADDR wip_in_addr_t* Local address of the socket, as
a 32 bits integer.

WIP_COPT_PEER_PORT u16* Port of the peer socket.

WIP_COPT_PEER_STRADDR ascii* buff,
u32 buf_len

Address of the peer socket. If
set to NULL on a pseudo-
connected UDP socket, remove
the connection.

Socket Layer

UDP: UDP Sockets

©Confidential Page: 87 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Value Description

WIP_COPT_PEER_ADDR wip_in_addr_t* Address of the peer socket, as
a 32 bits integer.

WIP_COPT_SUPPORT_READ none Fails if the channel does not
support wip_read() operations.
If supported, does nothing.

WIP_COPT_SUPPORT_WRITE none Fails if the channel does not
support wip_write() operations.
If supported, does nothing.

Socket Layer

UDP: UDP Sockets

©Confidential Page: 88 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.3.5 The wip_setOpts Function

The options supported by the wip_setOpts function, applied to a UDP are:

Option Value Description

WIP_COPT_END none End of the option

WIP_COPT_SND_BUFSIZE u32 Size of the emission buffer
associated with a socket.

WIP_COPT_RCV_BUFSIZE u32 Size of the reception buffer
associated with a socket.

WIP_COPT_CHECKSUM bool Whether the checksum control
must be performed by an UDP
socket.

WIP_COPT_TOS u8 Type of Service (cf. RFC 791)

WIP_COPT_TTL u8 Time-To-Live for packets.

WIP_COPT_DONTFRAG bool If set. UDP datagrams are not
allowed to be fragmented when
going through the network.

WIP_COPT_PEER_PORT u16 Port of the peer socket.

WIP_COPT_PEER_STRADDR ascii* Address of the peer socket. If set to
NULL on a pseudo-connected UDP
socket, remove the connection.

WIP_COPT_PEER_ADDR wip_in_addr_t Address of the peer socket, as a 32
bits integer.

NOTE

WIP_COPT_SND_BUFSIZE and WIP_COPT_RCV_BUFSIZE can be set to 0.
For instance, if user always wants to send data and not to receive any
incoming data, then it will be useful to set socket read buffer size to zero,
to save memory.

Socket Layer

UDP: UDP Sockets

©Confidential Page: 89 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.3.6 The wip_readOpts Function

The options supported by the wip_readOpts function, applied to a UDP
are:

Option Value Description

WIP_COPT_END none End of the option

WIP_COPT_PEEK bool (set)

When true, the message is not
deleted from the buffer after
reading, so that it can be read
again.

WIP_COPT_PEER_PORT u16* (get) Port of the peer socket.

WIP_COPT_PEER_STRADDR
ascii *buffer,

u32 buf_len (get)

Address of the peer socket. If
set to NULL on a pseudo-
connected UDP socket, remove
the connection.

WIP_COPT_PEER_ADDR wip_in_addr_t* (get) Address of the peer socket, as a
32 bits integer.

Socket Layer

UDP: UDP Sockets

©Confidential Page: 90 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.3.7 The wip_writeOpts Function

The options supported by the wip_writeOpts function, applied to a UDP
are:

Option Value Description

WIP_COPT_END none End of the option

WIP_COPT_PEEK bool (set)

When true, the message is not
deleted from the buffer after
reading, so that it can be read
again.

WIP_COPT_PEER_PORT u16* (get) Port of the peer socket.

WIP_COPT_PEER_STRADDR
ascii *buffer,

u32 buf_len (get)

Address of the peer socket. If set
to NULL on a pseudo-connected
UDP socket, remove the
connection.

WIP_COPT_PEER_ADDR wip_in_addr_t* (get) Address of the peer socket, as a
32 bits integer.

Socket Layer

TCPServer: Server TCP Sockets

©Confidential Page: 91 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.4 TCPServer: Server TCP Sockets

TCP server sockets do not support direct data communications. Instead,
they spawn new TCPClient TCP communication sockets whenever a peer
socket requests a connection. They do not have a meaningful event
handler, as they cannot be closed (they have no peer socket) and cannot
experience an error once they have been successfully created.

The state diagram is as follows:

Figure 8 TCP Server Channel State Diagram

There is no relevant temporal diagram to give here. Once the server
socket is created, the only direct interaction the user can have with it is
by closing it. Reacting to communication socket spawning is done by
handling the WIP_CEV_OPEN events of the spawned sockets.

Socket Layer

TCPServer: Server TCP Sockets

©Confidential Page: 92 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.4.1 The wip_TCPServerCreate Function

The wip_TCPServerCreate function creates a channel encapsulating a TCP
server socket.

6.4.1.1 Prototype

wip_channel_t wip_TCPServerCreate (u16 port,

 wip_eventHandler_f spawnedHandler,

 void *ctx);

6.4.1.2 Parameters

port:

The port number on which TCP server socket listens

spawnedHandler:

The call back handler which receives the events related to the TCP clients.
It is important to realize that this handler will react to events happening to
the resulting communication sockets, not to those happening to the
server socket. The context initially linked with this handler is ctx, although
it can be later changed, on a per-TCP client basis, through wip_setCtx().

ctx:

User data passed to the event handlers of the spawned sockets

6.4.1.3 Returned Values

This function returns

• the created channel

• NULL on error

Socket Layer

TCPServer: Server TCP Sockets

©Confidential Page: 93 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.4.2 The wip_TCPServerCreateOpts Function

The wip_TCPServerCreateOpts function creates a channel encapsulating a
TCP server socket with user defined settings.

6.4.2.1 Prototype

wip_channel_t wip_TCPServerCreateOpts (u16 port,

 wip_eventHandler_f spawnedHandler,

 void *ctx,

 ...);

6.4.2.2 Parameters

port:

The port number on which TCP server socket listens

spawnedHandler:

The call back handler which receives the events related to the TCP clients.
It is important to realize that this handler will react to events happening to
the resulting communication sockets, not to those happening to the
server socket. The context initially linked with this handler is ctx, although
it can be later changed, on a per-TCPClient basis, through wip_setCtx().

ctx:

User data passed to the event handlers of the spawned sockets

...:

Same as wip_TCPServerCreate(), plus a list of option names must be
followed by option values. The list must be terminated by WIP COPT
END. The options supported by wip_TCPServerCreateOpts() are:

Option Value Description

WIP_COPT_END none End of the option

WIP_COPT_SND_BUFSIZE u32 (inherited by
spawned TCPClients)

Size of the emission buffer
associated with a socket.

WIP_COPT_RCV_BUFSIZE u32 (inherited by
spawned TCPClients)

Size of the reception buffer
associated with a socket.

WIP_COPT_SND_LOWAT u32 (inherited by
spawned TCPClients)

Minimum amount of available space
that must be available in the
emission buffer before triggering a
WIP_CEV_WRITE event.

Socket Layer

TCPServer: Server TCP Sockets

©Confidential Page: 94 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Value Description

WIP_COPT_RCV_LOWAT u32 (inherited by
spawned TCPClients)

Minimum amount of available space
that must be available in the
reception buffer before triggering a
WIP_CEV_READ event.

WIP_COPT_NODELAY bool (inherited by
spawned TCPClients)

When set to TRUE, TCP packets are
sent immediately, even if the buffer
is not full enough

When set to FALSE, the packets will
be sent either,

a) by combining several small
packets into a bigger packet

b) when the data is ready to send
and the stack is idle

Note: Data has to be buffered and
managed by the user application.
There is no provision in WIP API’s to
wait for data block to be fully filled
before sending it.

WIP_COPT_TOS u8 (inherited by
spawned TCPClients)

Type of Service (cf. RFC 791)

WIP_COPT_TTL u8 (inherited by
spawned TCPClients)

Time-To-Live for packets sent.

Most of these options are inherited by spawned TCPClients. That is, they
have no effect on the TCPServer itself, but when the TCPServer creates
new TCPClients through an accept function call, these TCPClients are
initialized with those options.

6.4.2.3 Returned Values

This function returns

• the created channel

• NULL on error

Socket Layer

TCPServer: Server TCP Sockets

©Confidential Page: 95 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.4.3 The wip_getOpts Function

The options supported by the wip_getOpts function, applied to a
TCPServer are:

Option Value Description

WIP_COPT_END none End of the option

WIP_COPT_KEEPALIVE u32* n Sends a NOOP command every n tenth
of seconds, so that the server and any
NAT on the way won't shut down the
connection

WIP_COPT_SND_BUFSIZE u32* Size of the emission buffer associated
with a socket.

WIP_COPT_RCV_BUFSIZE u32* Size of the reception buffer associated
with a socket.

WIP_COPT_SND_LOWAT u32 Minimum amount of available space
that must be available in the emission
buffer before triggering a
WIP_CEV_WRITE event.

WIP_COPT_RCV_LOWAT u32* Minimum amount of available space
that must be available in the reception
buffer before triggering a
WIP_CEV_READ event.

WIP_COPT_NODELAY bool* When set to TRUE, TCP packets are
sent immediately, even if the buffer is
not full enough

When set to FALSE, the packets will be
sent either,

a) by combining several small packets
into a bigger packet

b) when the data is ready to send and
the stack is idle

Note: Data has to be buffered and
managed by the user application. There
is no provision in WIP API’s to wait for
data block to be fully filled before
sending it.

WIP_COPT_TOS u8* Type of Service (cf. RFC 791)

WIP_COPT_TTL u8* Time-To-Live for packets sent through
this socket; Time-To-Live for this packet,
when used in a wip_writeOpts().

Socket Layer

TCPServer: Server TCP Sockets

©Confidential Page: 96 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Value Description

WIP_COPT_PORT u16* Port occupied by this socket.

WIP_COPT_STRADDR ascii* buff,
u32 buf_len

Local address of the socket.

WIP_COPT_ADDR wip_in_addr_t* Local address of the socket, as a 32 bits
integer.

Socket Layer

TCPServer: Server TCP Sockets

©Confidential Page: 97 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.4.4 The wip_setOpts Function

The options supported by the wip_setOpts function, applied to a
TCPServer are:

Option Value Description

WIP_COPT_END none End of the option

WIP_COPT_KEEPALIVE u32 n Sends a NOOP command every
n tenth of seconds, so that the
server and any NAT on the way
won't shut down the connection

WIP_COPT_SND_BUFSIZE u32 (inherited by
spawned TCPClients)

Size of the emission buffer
associated with a socket.

WIP_COPT_RCV_BUFSIZE u32 (inherited by
spawned TCPClients)

Size of the reception buffer
associated with a socket.

WIP_COPT_SND_LOWAT u32 (inherited by
spawned TCPClients)

Minimum amount of available
space that must be available in
the emission buffer before
triggering a WIP_CEV_WRITE
event.

WIP_COPT_RCV_LOWAT u32 (inherited by
spawned TCPClients)

Minimum amount of available
space that must be available in
the reception buffer before
triggering a WIP_CEV_READ
event.

WIP_COPT_NODELAY bool (inherited by
spawned TCPClients)

When set to TRUE, TCP packets
are sent immediately, even if the
buffer is not full enough

When set to FALSE, the
packets will be sent either,

a) by combining several small
packets into a bigger packet

b) when the data is ready to
send and the stack is idle

Note: Data has to be buffered
and managed by the user
application. There is no
provision in WIP API’s to wait
for data block to be fully filled
before sending it

Socket Layer

TCPServer: Server TCP Sockets

©Confidential Page: 98 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Value Description

WIP_COPT_TOS u8 (inherited by
spawned TCPClients)

Type of Service (cf. RFC 791)

WIP_COPT_TTL u8 (inherited by
spawned TCPClients)

Time-To-Live for packets.

NOTE

WIP_COPT_SND_BUFSIZE and WIP_COPT_RCV_BUFSIZE can be set to
0. For instance, if user always wants to send data and not to receive
any incoming data, then it will be useful to set socket read buffer size
to zero, to save memory.

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 99 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.5 TCPClient: TCP Communication Sockets

Communication TCP sockets, can either be created as client TCP sockets,
or spawned by a server TCP socket. Although there are two distinct ways
to create communication sockets, on client-side and server-side, once
they are created and connected together, they are symmetrical and share
the same API.

6.5.1 Read/Write Events

6.5.1.1 Read Events

READ event will be received:

• first time if there is more than WIP_COPT_RCV_LOWAT bytes to
read in the socket’s read buffer

• when read attempt returns less data than the requested data and
there is more than WIP_COPT_RCV_LOWAT bytes available in the
buffer

Let’s consider an example,

WIP_COPT_RCV_BUFSIZE (MAX) has been set to 5840 bytes and
WIP_COPT_RCV_LOWAT (MIN) has been set to 1000 bytes.

Figure 9 Generation of Read event

In this example, the diagram shown above explains the scenario when
READ events are received:

Step 1: Attempt is made to read data (3000 bytes).The buffer is empty as

d 1400 bytes of data in the buffer. In this case, READ

data has not been received, so no READ event is received and read will
fail.

Step 2: Receive
event will be received as the size of readable data in the buffer is more
than WIP_COPT_RCV_LOWAT, and no READ event has been sent since
the last unsuccessful attempt to read.

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 100 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

ill not be received, as READ event was already received in
tep 2. Data is read (3000 bytes) from the buffer. Size of readable data in
e buffer is 500 bytes.

Step 4: Da
(500 bytes) le
buffer is less.

Step 5: More case,
s e size o
WIP_COPT
4) since last t
be received.

Step 3: More data (2100 bytes) is received in the buffer. In this case,
READ event w
S
th

ta is read (1500 bytes) from the buffer. Read attempt reads
ss data than the requested data, as the available data in the

data (1500 bytes) is received in the buffer. In this
ince th f the readable data in the buffer (2000 bytes) is more than

_RCV_LOWAT, and there has been an incomplete read (at step
ime a READ event has been received, a new READ event will

generated, and when it is processed by the application. dg
only applicable for datagram-oriented protocols

2. NNOTE

the event is not set when a READ event
ecause the amount of readable data

ta arrives between when the event is
m_size is

o READ event will be received when data is read from the buffer
f readable data is more than WIP_COPT_RCV_LOWAT
 is received.

1. The dgm_size field in
occurs. It will not be reliable, b
might change when new da

and the size o
and more data

6.5.1.2 Write Events

WRITE event will be received when:

• channel is ope

OPT_SND_LOWAT bytes available in the

ned for the first time

• write attempt writes less data than the requested data and there
are more than WIP_C
buffer

Let’s consider an example,

WIP_COPT_SND_BUFSIZE (MAX) has been set to 5840 bytes and
WIP_COPT_SND_LOWAT (MIN) has been set to 1000 bytes.

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 101 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Figure 10 Generation of Write event

In this example, the diagram shown above explains the scenario when
WRITE events are received:

Step 1: WRITE event is received as the channel is opened for the first time
and the buffer is empty.

Step 2: 4000 bytes of data are written to the buffer. In this case, WRITE
event will not be received as there is still memory (1840 bytes) to write
more data

Step 3: Attempt is made to write data (2340 bytes) more than available
buffer size. In this case, only 1840 bytes of data is written successfully to
the buffer as the free buffer size is 1840 bytes. Remaining data (500
bytes) will be written to the buffer when the free buffer size becomes
equal or more than WIP_COPT_SND_LOWAT.

Step 4: Data is flushed (1340 bytes) from the buffer and now the free
buffer is 1340 bytes. In this case, WRITE event will be received, as the
free buffer is more than WIP_COPT_SND_LOWAT and there has been no
WRITE event since last time a WRITE event has been received.

Step 5: Remaining data (500 bytes) is written to the buffer. In this case,
WRITE event will not be received, as there is still memory (840 bytes) to
write more data.

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 102 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.5.2 Statecharts

The complete state diagram of a TCP communication socket is given
below:

Figure 11 TCP Communication Channel State Diagram

This state diagram might be considered too complex for practical
reference. The “OpenReady”, “Read empty”, “Write full”, “Write full and
Read empty” states can be unified. The resulting state diagram will be
simpler, but will not predict whether non-blocking read/write operations
will succeed. It does not precisely specify when the WIP_CEV_READ,
WIP_CEV_WRITE and WIP_CEV_PEER_CLOSE events can occur.

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 103 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Figure 12 TCP Communication Channel Simplified State Diagram

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 104 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

A typical temporal flow example follows:

Figure 13 TCP Communication Channel Temporal Diagram

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 105 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.5.3 The wip_TCPClientCreate Function

The wip_TCPClientCreate function creates a channel encapsulating a TCP
client socket.

6.5.3.1 Prototype

wip_channel_t wip_TCPClientCreate (const ascii *serverAddr,

 u16 serverPort,

 wip_eventHandler_f evHandler,

 void *ctx);

6.5.3.2 Parameters

serverAddr:

Address of the destination server which can be either a DNS address, or a
numeric one in the form “xxx.xxx.xxx.xxx”.

serverPort:

Port of the server socket to connect to

evHandler:

The call back handler which receives the network events related to the
socket. Possible events kinds are WIP_CEV_READ, WIP_CEV_WRITE,
WIP_CEV_PEER_CLOSE and WIP_CEV_ERROR. If set to NULL, all events
received in this socket will be discarded.

ctx:

User data to be passed to the event handler every time it is called

6.5.3.3 Returned Values

This function returns

• the created channel

• NULL on error

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 106 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.5.4 The wip_TCPClientCreateOpts Function

The wip_TCPClientCreateOpts function creates a channel encapsulating a
TCP client socket, with advanced options.

6.5.4.1 Prototype

wip_channel_t wip_TCPClientCreateOpts (const ascii *serverAddr,

 u16 serverPort,

 wip_eventHandler_f evHandler,

 void *ctx,

 ...);

6.5.4.2 Parameters

The parameters are the same as the parameters for the
wip_TCPClientCreate() function, plus list of option names. The list of
option names must be followed by option values. The list must be
terminated by WIP_COPT_END .The options supported by
wip_TCPServerCreateOpts() are:

Option Value Description

WIP_COPT_END none End of the option

WIP_COPT_KEEPALIVE u32 n Sends a NOOP command every n tenth of
seconds, so that the server and any NAT on
the way won't shut down the connection

WIP_COPT_SND_BUFSIZE u32 Size of the emission buffer associated with a
socket.

WIP_COPT_RCV_BUFSIZE u32 Size of the reception buffer associated with a
socket.

WIP_COPT_SND_LOWAT u32 Minimum amount of available space that
must be available in the emission buffer
before triggering a WIP_CEV_WRITE event.

WIP_COPT_RCV_LOWAT u32 Minimum amount of available space that
must be available in the reception buffer
before triggering a WIP_CEV_READ event.

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 107 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Value Description

WIP_COPT_NODELAY bool When set to TRUE, TCP packets are sent
immediately, even if the buffer is not full
enough

When set to FALSE, the packets will be sent
either,

a) by combining several small packets into a
bigger packet

b) when the data is ready to send and the
stack is idle

Note: Data has to be buffered and managed
by the user application. There is no provision
in WIP API’s to wait for data block to be fully
filled before sending it.

WIP_COPT_MAXSEG u32 Maximum size of TCP packets

WIP_COPT_TOS u8 Type of Service (cf. RFC 791)

WIP_COPT_TTL u8 Time-To-Live for packets.

WIP_COPT_STRADDR ascii* Local address of the socket.

WIP_COPT_PORT u16 Port occupied by this socket.

6.5.4.3 Returned Values

This function returns

• the created channel

• NULL on error

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 108 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.5.5 The wip_abort Function

The wip_abort function aborts a TCP communication, causing an error on
the peer socket.

6.5.5.1 Prototype

int wip_abort (wip_channel_t c);

6.5.5.2 Parameters

c:

The socket that must be aborted

6.5.5.3 Returned Values

This function returns

• zero on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_CERR_NOT when abort i re
nels

_SUPPORTED Returned
UDP chan

s quested on TCP server or

WIP_CERR_INTERNAL Impossible to abort the T tion due to
al reasons

CP communica
intern

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 109 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.5.6 The wip_shutdown Function

The wip_shutdown function shuts down input and/or output
communication on the socket. If both communications are shut down, the
socket is closed. If the output communication is closed, the peer socket
receives by a WIP_CEV_PEER_CLOSE error event.

6.5.6.1 Prototype

int wip_shutdown (wip_channel_t c,

 bool read,

 bool write);

6.5.6.2 Parameters

c:

The socket that must be shut down

read:

Whether the input communication must be shut down

write:

Whether the output communication must be shut down

6.5.6.3 Returned Values

This function returns

• zero on success

• In case of an error, a negative error code as described below:

Error Code Description

WIP_CERR_NOT hen abort is
els

_SUPPORTED Returned w
UDP chann

requested on TCP server or

WIP_CERR_INTERNAL Impossible to abort the TCP due to
l reasons

 communication
interna

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 110 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.5.7 The wip_getOpts Function

The options supported by the wip_getOpts function, applied to a
TCPClient are:

Option Value Description

WIP_COPT_END none End of the option

WIP_COPT_KEEPALIVE u32* n Sends a NOOP command every n
tenth of seconds, so that the server
and any NAT on the way won't
shut down the connection

WIP_COPT_SND_BUFSIZE u32* Size of the emission buffer
associated with a socket.

WIP_COPT_RCV_BUFSIZE u32* Size of the reception buffer
associated with a socket.

WIP_COPT_SND_LOWAT u32* Minimum amount of available
space that must be available in the
emission buffer before triggering a
WIP_CEV_WRITE event.

WIP_COPT_RCV_LOWAT u32* Minimum amount of available
space that must be available in the
reception buffer before triggering a
WIP_CEV_READ event.

WIP_COPT_ERROR s32* Number of the last error
experienced by that socket.

WIP_COPT_NREAD u32* Number of bytes that can currently
be read on that socket.

WIP_COPT_NWRITE u32* Number of bytes that can currently
be written on that socket. For a
PING, size of the request
(default=20)

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 111 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Value Description

WIP_COPT_NODELAY bool* When set to TRUE, TCP packets are
sent immediately, even if the buffer
is not full enough

When set to FALSE, the packets
will be sent either,

a) by combining several small
packets into a bigger packet

b) when the data is ready to send
and the stack is idle

Note: Data has to be buffered and
managed by the user application.
There is no provision in WIP API’s
to wait for data block to be fully
filled before sending it

WIP_COPT_MAXSEG u32* Maximum size of TCP packets

WIP_COPT_TOS u8* Type of Service (cf. RFC 791)

WIP_COPT_TTL u8* Time-To-Live for packets.

WIP_COPT_PORT u16* Port occupied by this socket.

WIP_COPT_STRADDR ascii* buff,

u32 buf_len

Local address of the socket.

WIP_COPT_ADDR wip_in_addr_t* Local address of the socket, as a 32
bits integer.

WIP_COPT_PEER_PORT u16* Port of the peer socket.

WIP_COPT_PEER_STRADDR ascii* buff,

u32 buf_len

Address of the peer socket. If set to
NULL on a pseudo-connected UDP
socket, remove the connection.

WIP_COPT_PEER_ADDR wip_in_addr_t* Address of the peer socket, as a 32
bits integer.

WIP_COPT_SUPPORT_READ none Fails if the channel does not
support wip_read() operations. If
supported, does nothing.

WIP_COPT_SUPPORT_WRITE none Fails if the channel does not
support wip_write() operations. If
supported, does nothing.

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 112 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.5.8 The wip_setOpts Function

The options supported by the wip_setOpts function, applied to a TCP

clients are:

Option Value Description

WIP_COPT_END none End of the option

WIP_COPT_KEEPALIVE u32 Sends a NOOP command every n tenth of
seconds, so that the server and any NAT on the
way won't shut down the connection

WIP_COPT_SND_BUFSIZE u32 Size of the emission buffer associated with a
socket.

WIP_COPT_RCV_BUFSIZE u32 Size of the reception buffer associated with a
socket.

WIP_COPT_SND_LOWAT u32 Minimum amount of available space that must
be available in the emission buffer before
triggering a WIP_CEV_WRITE event.

WIP_COPT_RCV_LOWAT u32 Minimum amount of available space that must
be available in the reception buffer before
triggering a WIP_CEV_READ event.

WIP_COPT_NODELAY bool When set to TRUE, TCP packets are sent
immediately, even if the buffer is not full enough

When set to FALSE, the packets will be sent
either,

a) by combining several small packets into a
bigger packet

b) when the data is ready to send and the stack
is idle

Note: Data has to be buffered and managed by
the user application. There is no provision in
WIP API’s to wait for data block to be fully filled
before sending it

WIP_COPT_TOS u8 Type of Service (cf. RFC 791)

WIP_COPT_TTL u8 Time-To-Live for packets.

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 113 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.5.9 The wip_readOpts Function

The options supported by the wip_readOpts function, applied to a
TCPClient are:

Option Value Description

WIP_COPT_END none End of the option

WIP_COPT_PEEK bool (set) When true, the message is not deleted from
the buffer after reading, so that it can be
read again.

Socket Layer

TCPClient: TCP Communication Sockets

©Confidential Page: 114 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.5.10 The wip_writeOpts Function

The option supported by the wip_writeOpts function, applied to a
TCPClient is:

Option Value Description

WIP_COPT_END none End of the option

Socket Layer

Ping: ICMP Echo Request Handler

©Confidential Page: 115 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.6 Ping: ICMP Echo Request Handler

The ping service is presented as a channel. It does not support read/write
operations, the only thing it can do is receive and react to WIP_CEV_PING
events.

Ping channels will generate WIP_CEV_PING events when receiving
network responses. The ping channel has a reception timeout, set by
WIP_COPT_RCV_TIMEOUT. If a network response arrives before [timeout],
a WIP_CEV_PING event is generated, with its [timeout] flag set to false. If
the ping packet has been sent, but the response didn't arrive within
[timeout], a WIP_CEV_PING is generated, but its [timeout] flag is set to
TRUE. However, if the ping packet couldn't be emitted at all (invalid
hostname, non-routable address, network down...), no WIP_CEV_PING is
generated; only a WIP_CEV_ERROR describing why the packet couldn't be
sent is emitted.

6.6.1 The wip_pingCreate Function

The wip_pingCreate function creates a channel supporting a ping session.

6.6.1.1 Prototype

wip_channel_t wip_pingCreate (const ascii *peerAddr,

 wip_eventHandler_f evHandler,

 void *ctx);

6.6.1.2 Parameters

peerAddr:

Address of host that the user wants to ping. This can be either a DNS
address, or a numeric one in the form “xxx.xxx.xxx.xxx”.

evHandler:

The call back handler which receives the network events related to the
socket. Possible event kinds are WIP_CEV_PING and WIP_CEV_ERROR.

ctx:

It is the user data to be passed to the event handler every time it is called.

6.6.1.3 Returned Values

This function returns

• the created channel

• NULL on error

Socket Layer

Ping: ICMP Echo Request Handler

©Confidential Page: 116 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.6.2 The wip_pingCreateOpts Function

The wip_pingCreateOpts function creates a channel supporting a ping
session. When a response arrives, a PING event is sent to the event
handler. The response contains:

• a packet index from 0 to n-1, n being the number of sent packet
sets with WIP_COPT_REPEAT

• a response time in milliseconds

• a Boolean indicating whether the packet arrived too late (after the
timeout limit set by WIP_COPT_RCV_TIMEOUT)

6.6.2.1 Prototype

wip_channel_t wip_pingCreateOpts (const ascii *destAddr,

 wip_eventHandler_f handler,

 void *ctx,

 ...);

6.6.2.2 Parameters

destAddr:

Address of host that the user wants to ping. This can be either a DNS
address, or a numeric one in the form “xxx.xxx.xxx.xxx”.

handler:

The call back handler which receives the network events related to the
socket. Possible events kinds are WIP_CEV_PING and WIP_CEV_ERROR.

ctx:

It is the user data to be passed to the event handler every time it is called

... :

The parameters are the same as the parameters for the wip_pingCreate()
function, plus a WIP_COPT_END-terminated series of option parameters.
The options supported by wip_pingCreateOpts() are:

Option Value Description

WIP_COPT_END none End of the option

WIP_COPT_REPEAT s32 Number of PING echo requests to send.

WIP_COPT_INTERVAL u32 Time between two PING echo requests, in ms.

WIP_COPT_RCV_TIMEOUT u32 For PING channels, timeout for ECHO requests.

Socket Layer

Ping: ICMP Echo Request Handler

©Confidential Page: 117 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Value Description

WIP_COPT_TTL u8 Time-To-Live for packets.

WIP_COPT_NWRITE u32 Number of bytes that can currently be written on
that socket. For a PING, size of the request
(default=20)

6.6.2.3 Returned Values

This function returns

• the created channel on success

• NULL on error

Socket Layer

Ping: ICMP Echo Request Handler

©Confidential Page: 118 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.6.3 The wip_getOpts Function

The options supported by the wip_getOpts function, applied to a ping are:

Options Value Description

WIP_COPT_END End of the op none tion

WIP_COPT_REPEAT s32* Number of PING echo requests to send.

WIP_COPT_INTERVAL u32* Time between PING echo reques i two ts, n ms.

WIP_COPT_RCV_TIMEOUT u32* For PING channels, timeout for ECHO requests.

WIP_COPT_TTL u8* Time-To-Live for packets.

WIP_COPT_NWRITE u32* Number of by at can currently be
on that socket. For a PING, size of the r
(default=20)

tes th written
equest

Socket Layer

Ping: ICMP Echo Request Handler

©Confidential Page: 119 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

6.6.4 The wip_setOpts Function

The options supported by the wip_setOpts function, applied to a ping are:

Options Value Description

WIP_COPT_END none End of the option

WIP_COPT_INTERVAL u32 Time between two PING echo requests, in ms.

WIP_COPT_RCV For PING channels, timeout for ECHO re u_TIMEOUT u32 q ests.

WIP_COPT_REPEAT s32 Number of PING echo requests to send.

WIP_COPT_TTL u8 Time-To-Live for packets.

WIP_COPT_NWRITE u32 Number of bytes that can currently be written
n that socket. For a PING, size of the re
efault=20)

o
(d

quest

FILE

Ping: ICMP Echo Request Handler

©Confidential Page: 120 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7 FILE

As in WIP, communication happens through abstract channels, called
wip_channel_t. The control of a file resource such as FTP or HTTP will be
ensured by a connection channel; variables holding a connection channel
will typically be called cx. Whenever a connection channel has to transfer
data, it will do so asynchronously, by creating a dedicated data transfer
channel; variables holding data transfer channels will typically be called c.

For instance, when we want to send data to a connection channel, we
will call wip_putFile(), which will return a data transfer channel. This
channel will receive events related to the file transfer:

• WIP_CEV_OPEN when it is ready to receive data

• WIP_CEV_WRITE, if it went through an overflow of data to send,
then becomes available again to send more data

• WIP_CEV_ERROR in case of underlying protocol error

It will also support wip_write(), so that the application can actually send
the data which represent the file contents; finally, wip_close() will free the
data transfer channel, and signal that the whole file has been written.
wip_setOpts() allows to pass protocol-dependent settings to the channel.

Similarly, wip_getFile() will retrieve files from the connection, also by
spawning a data transfer channel; this data transfer channel will
experience WIP_CEV_OPEN, WIP_CEV_READ, WIP_CEV_ERROR events,
and WIP_CEV_PEER_CLOSE once the whole file has been read. It also
supports wip_read() and wip_close().

File listing also implies asynchronous data transfer, and will also happen
through a spawned data transfer channel, as detailed below.

It might seem surprising that both connection channels and data transfer
channels are supported by the same wip_channel_t C type. Indeed,
connection and data transfer channels both support wip_setOpts(),
wip_getOpts() and wip_close() functions (plus a couple of other, less
important, functions), they must therefore share the same type.
Moreover, some dynamic type checking is performed, so that if an
application tries to use wip_getFile() on a data channel, or wip_read() on a
connection channel, an explicit error message will be issued.

FILE

Required Header File

©Confidential Page: 121 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.1 Required Header File

The header file for the FILE service is wip_file.h.

FILE

The wip_getFile Function

©Confidential Page: 122 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.2 The wip_getFile Function

The wip_getFile function is used to download a file from the server. The
connection channel is not used for reading a file content. Instead, this
function create and return dedicated data transfer channel, which support
read events and function calls.

7.2.1 Prototype

wip_channel_t wip_getFile (wip_channel_t ftp_cx,

 ascii *file_name,

 wip_eventHandler_f evh,

 void *ctx);

7.2.2 Parameters

ftp_cx:

It is the connection channel

file_name:

It is the name of the file to download from the server. Some protocols
might support unnamed files; in this case, NULL is an acceptable value.

evh:

It is the event handler to be attached to the newly created data transfer
channel. It is the responsibility of the event handler, provided by the user,
to read the arriving data, and to put them in the appropriate place. When
the file transfer is finished, a WIP_CEV_PEER_CLOSE event is sent to the
event handler.

ctx:

It is the user data passed to the event handler, evh every time it is called.

7.2.3 Returned Values

The function returns

• data transfer channel on success

• NULL on failure

FILE

The wip_getFileOpts Function

©Confidential Page: 123 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.3 The wip_getFileOpts Function

The wip_getFileOpts function is used to download a file from the server
with the user defined options like logging in with an account and
password rather than anonymously. The connection channel is not used
for reading a file content. Instead, this function creates and returns
dedicated data transfer channel, which support read events and function
calls.

7.3.1 Prototype

wip_channel_t wip_getFileOpts (wip_channel_t ftp_cx,

 ascii *file_name,

 wip_eventHandler_f evh,

 void *ctx,

 ...);

7.3.2 Parameters

The parameters are the same as the parameters for the wip_getFile
function, plus list of option names. The option names must be followed
by option values. The list must be terminated by WIP_COPT_END.
Supported options depend on the kind of connection channel and are
mentioned in sections 8.8, 9.8 and 11.3.2.

7.3.3 Returned Values

The function returns

• data transfer channel on success

• NULL on failure

FILE

The wip_putFile Function

©Confidential Page: 124 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.4 The wip_putFile Function

The wip_putFile function is used to upload a file to the server. The
connection channel is not used for writing file content. Instead, these
functions create and return dedicated data transfer channel, which
supports write events and function calls.

7.4.1 Prototype

wip_channel_t wip_putFile (wip_channel_t ftp_cx,

 ascii *file_name,

 wip_eventHandler_f evh,

 void *ctx);

7.4.2 Parameters

ftp_cx:

It is the connection channel.

file_name:

It is the name of the file to upload on the server. Some protocols might
support unnamed files; in this case, NULL is an acceptable value.

evh:

It is the event handler to be attached to the newly created data transfer
channel. The possible event kind is WIP_CEV_WRITE.

ctx:

It is the user data passed to the event handler evh every time it is called.

7.4.3 Returned Values

The function returns

• data transfer channel on success

• NULL on failure

FILE

The wip_putFileOpts Function

©Confidential Page: 125 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.5 The wip_putFileOpts Function

The wip_putFileOpts function is used to upload a file to the server with
the user defined options. The connection channel is not used for writing
file content. Instead, these functions create and return dedicated data
transfer channel, which supports write events and function calls.

7.5.1 Prototype

wip_channel_t wip_putFileOpts (wip_channel_t ftp_cx,

 ascii *file_name,

 wip_eventHandler_f evh,

 void *ctx,

 ...);

7.5.2 Parameters

The parameters are the same as the parameters for the wip_putFile
function, plus list of option names. The option names must be followed
by option values. The list must be terminated by WIP_COPT_END.
Supported options depend on the kind of connection channel and are
mentioned in sections 8.10, 9.10 and 10.3.1.

7.5.3 Returned Values

The function returns

• data transfer channel on success

• NULL on failure

FILE

The wip_cwd Function

©Confidential Page: 126 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.6 The wip_cwd Function

The wip_cwd function changes the current working directory on the
server. Once this command is successfully terminated, a WIP_CEV_DONE
event is sent to the event handler. If the change does not succeed
(typically because dir_name doesn’t exist in the current directory), a
WIP_CEV_ERROR is sent to the handler.

The cx will be put in WIP_CSTATE_BUSY mode until the server response
arrives, which means that no other command will be accepted by cx until
WIP_CEV_DONE or WIP_CEV_ERROR arrives.

7.6.1 Prototype

int wip_cwd (wip_channel_t cx,

 ascii *name);

7.6.2 Parameters

cx:

This is the connection channel whose working directory is to be changed.

name:

This is the name of the new working directory.

7.6.3 Returned Values

The function returns

• a status code 0 if the request has been sent successfully

• a negative error code on error

FILE

The wip_mkdir Function

©Confidential Page: 127 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.7 The wip_mkdir Function

The wip_mkdir function is used to create a new directory in the current
working directory. The success or failure is reported as WIP_CEV_DONE or
WIP_CEV_ERROR events on cx's event handler.

The cx will be put in WIP_CSTATE_BUSY mode until the server response
arrives, which means that no other command will be accepted by cx until
WIP_CEV_DONE or WIP_CEV_ERROR arrives.

7.7.1 Prototype

int wip_mkdir (wip_channel_t cx,

 ascii *name);

7.7.2 Parameters

cx:

This is the connection channel whose working directory is to be changed.

name:

This is the name of the new working directory.

7.7.3 Returned Values

The function returns

• 0 on success

• negative error code on error

FILE

The wip_deleteFile Function

©Confidential Page: 128 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.8 The wip_deleteFile Function

The wip_deleteFile function is used to delete a file. The success or failure
is reported as WIP_CEV_DONE or WIP_CEV_ERROR events on cx's event
handler.

The cx will be put in WIP_CSTATE_BUSY mode until the server response
arrives, which means that no other command will be accepted by cx until
WIP_CEV_DONE or WIP_CEV_ERROR arrives.

7.8.1 Prototype

int wip_deleteFile (wip_channel_t cx,

 ascii *name);

7.8.2 Parameters

cx:

This is the connection channel on which file will be deleted.

name:

It is the name of the file to delete.

7.8.3 Returned Values

The function returns

• 0 on success

• negative error code on error

FILE

The wip_deleteDir Function

©Confidential Page: 129 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.9 The wip_deleteDir Function

The wip_deleteDir function is used to delete an empty directory. The
success or failure is reported as WIP_CEV_DONE or WIP_CEV_ERROR
events on cx's event handler.

The cx will be put in WIP_CSTATE_BUSY mode until the server response
arrives, which means that no other command will be accepted by cx until
WIP_CEV_DONE or WIP_CEV_ERROR arrives.

7.9.1 Prototype

int wip_deleteDir (wip_channel_t ftp_cx,

 ascii *dir_name);

7.9.2 Parameters

cx:

This is the Connection channel on which file will be deleted.

name:

This is the name of the directory to be deleted.

7.9.3 Returned Values

The function returns

• 0 on success

• negative error code on error

FILE

The wip_renameFile Function

©Confidential Page: 130 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.10 The wip_renameFile Function

The wip_renameFile function is used to change file name. The file is
expected to be in the current working directory. The success or failure is
reported as WIP_CEV_DONE or WIP_CEV_ERROR events on cx's event
handler.

The cx will be put in WIP_CSTATE_BUSY mode until the server response
arrives, which means that no other command will be accepted by cx until
WIP_CEV_DONE or WIP_CEV_ERROR arrives.

7.10.1 Prototype

int wip_renameFile (wip_channel_t cx,

 ascii *old_name,

 ascii *new_name);

7.10.2 Parameters

cx:

This is the connection channel on which file will be renamed old_name.

old_name:

This is the previous name of the file.

new_name:

This is the new name to give to the file.

7.10.3 Returned Values

The function returns

• 0 on success

• negative error code on error

FILE

The wip_getFileSize Function

©Confidential Page: 131 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.11 The wip_getFileSize Function

The wip_getFileSize function is used to get the file size in bytes. On
success, a WIP_CEV_DONE event is sent to ftp_ctx, with
event->content.done.aux set to the file’s size. On failure, a
WIP_CEV_ERROR event is triggered.

7.11.1 Prototype

int wip_getFileSize (wip_channel_t cx,

 ascii *name);

7.11.2 Parameters

cx:

This is the connection channel of the file whose size is required.

name:

This is the name of the file whose size is required.

7.11.3 Returned Values

The function returns

• 0 on success

• negative error code on error

FILE

The wip_list Function

©Confidential Page: 132 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.12 The wip_list Function

As for other kinds of data transfer with the network, directory listing must
happen asynchronously. When the server replies, its reply is handled in
the standard WIP way: a data transfer channel is created by the
connection channel; information about files is gathered through wip_read,
and the application is informed that data is available through
WIP_CEV_READ events, preceded by an initial WIP_CEV_OPEN when the
channel initialization is done.

Information arrives on the spawned data transfer channel in the form of
wip_fileInfo_t structures:

typedef struct wip_fileInfo_t {

 u16 size;

 u16 nentries;

 union {

 u32 u32;

 ascii *ascii;

 void *ptr;

 } *entries;

 u8 data[];

} wip_fileInfo_t;

This structure contains a table of data entries, which can be access
through known index. For instance, FTP will define the following entry
numbers:

enum {

 WIP_FOPT_NAME;

 WIP_FOPT_SIZE;

 WIP_FOPT_CANREAD;

 WIP_FOPT_CANWRITE;

 WIP_FOPT_ISDIRECTORY;

};

Values can be accessed by using these indexes on the entries. For
instance, the following code displays the name and size of the file
described by the wip_fileInfo_t structure:

FILE

The wip_list Function

©Confidential Page: 133 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

printf (“The file %s is %i bytes long.\n”,

 fi.entries [WIP_FOPT_NAME].u32,

 fi.entries [WIP_FOPT_SIZE].ascii);

Event generation: The resulting channel from after wip_list function call is
a stream channel i.e.

• a WIP_CEV_OPEN event is sent before the listing is ready to begin

• a WIP_CEV_READ is sent when the first chunk of data is available

• after a call to wip_read() failed to entirely fill the buffer, the next
arrival of data is signaled by a new WIP_CEV_READ event

• a WIP_CEV_PEER_CLOSE after the last data is arrived

Reading on the channel: The channel is filled with wip_fileInfo_t
structures. wip_read() will only write entire structures, therefore if the
buffer size is not a multiple of sizeof(wip_fileInfo_t), it cannot be entirely
filled. All file Info structures have been read when WIP_CEV_PEER_CLOSE
event is received.

Structure initialization: Initializing a wip_fileInfo_t structure is quite
difficult, due to various pointer settings and memory manipulations. A
function wip_fileInfoInit() is provided to ease this.

7.12.1 Prototype

wip_channel_t wip_list (wip_channel_t cx,

 ascii *dir_name,

 wip_eventHandler_f evh,

 void *ctx);

7.12.2 Parameters

cx:

This is the Connection channel

dir_name:

This is the name of the directory whose content must be listed (can be
NULL, in this case the CWD will be listed)

evh:

This is the Event handler which will receive the events

FILE

The wip_list Function

©Confidential Page: 134 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

ctx:

This is the evh user data

7.12.3 Returned Values

The function returns spawned transfer channel.

FILE

The wip_fileInfoInit Function

©Confidential Page: 135 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.13 The wip_fileInfoInit Function

Initializing a wip_fileInfo_t structure is quite difficult, due to various
pointer settings and memory manipulations. A function wip_fileInfoInit() is
provided to ease this.

7.13.1 Prototype

wip_fileInfo_t *wip_fileInfoInit (void *buffer,

 u32 buf_len,

 ...);

7.13.2 Parameters

buffer:

The memory area where the file Info structure will be built

buf_len:

The amount of memory available in buffer

...:

A list of entry descriptions, terminated with WIP_FOPT_END. Each
description has one of the following forms:

• option index, WIP_FOPT_TYPE_U32

• option index, WIP_FOPT_TYPE_S32

• option index, WIP_FOPT_TYPE_PTR, data_len

• option index, WIP_FOPT_TYPE_ASCII, string_len

option_index will typically be a WIP_FOPT_XXX index.

If the WIP_FOPT_TYPE given is u32 or s32, then the integer entry is
initialized to zero. If it is a ptr or an ascii*, it is initialized as a pointer, in
an area in the buffer after the wip_fileInfo_t, to a reserved memory area of
data_len (resp. string_len) bytes. This area is initialized with zeros as well.

The field size and nentries of the returned wip_fileInfo_t structure are set
to the correct values as well. size takes the additional memory areas (for
ascii and ptr entries) into account.

Notice that the WIP_FOPT_XXX indexes do not need to be passed in
increasing order, and do not need to be contiguous either. Any “gap” in
the entries would be set to zero.

FILE

The wip_fileInfoInit Function

©Confidential Page: 136 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

7.13.3 Returned Values

The function returns

• A pointer to the created wip_fileInfo_t structure on success; this
pointer will be equal to buffer.

• NULL on error (most likely a “not enough memory” error)

FTP Client

The wip_fileInfoInit Function

©Confidential Page: 137 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

8 FTP Client

FTP client offers the ability to transfer files to and from an FTP server,
through TCP/IP. Wavecom's FTP client has the following specificities:

• it is based on Wavecom's wip_channel_t abstract channel
interface, and its file transfer abstract API

• it does not rely on a local file system

An FTP session mainly consists of connection to the FTP server; this
connection is represented as a wip_channel_t. This connection will
support various operations, among which the most important are file
getting and file putting. Whenever the user requires the FTP session to
get or put a file from/to the server, a new data transfer connection is
opened, which is intended to read/write the file from/to the server. Several
data transfer sessions can happen simultaneously, which means that the
application can read/write several files concurrently.

FTP Client

Required Header File

©Confidential Page: 138 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

8.1 Required Header File

The header file for the FTP service is wip_ftp.h.

FTP Client

The wip_FTPCreate Function

©Confidential Page: 139 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

8.2 The wip_FTPCreate Function

An anonymous FTP connection is created through a call to
wip_FTPCreate. The wip_FTPCreate function takes an event handler as a
parameter, which will be in charge of reacting to network-caused events
on the FTP session.

The FTP connection is not ready as soon as the creation function returns.
The user is notified that the connection is ready when WIP_CEV_OPEN
event is received in the event handler. If the initialization fails (e.g., the
password is not accepted, or the server is not reachable), a
WIP_CEV_ERROR will be received in the event handler.

8.2.1 Prototype

wip_channel_t wip_FTPCreate (ascii *server_name,

 wip_eventHandler_f evh,

 void *ctx);

8.2.2 Parameters

server_name:

In: The name of the server, either as a DNS resolved name, or in dotted
notation, e.g. “192.168.1.1”.

evh:

In: The event handler is the one that receives reactions from the network.

ctx:

In: This is the user data to be passed to the event handler every time it is
called.

8.2.3 Returned Values

The function returns

• the created channel on success

• NULL on error

FTP Client

The wip_FTPCreateOpts Function

©Confidential Page: 140 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

8.3 The wip_FTPCreateOpts Function

The wip_FTPCreateOpts function is used to create FTP connection with
user defined options like, logging in with an account and password rather
than anonymously.

8.3.1 Prototype

wip_channel_t wip_FTPCreateOpts (ascii *server_name,

 wip_eventHandler_f evh,

 void *ctx,

 ...);

8.3.2 Parameters

The parameters are the same as the parameters for the wip_FTPCreate()
function, plus list of option names. The option names must be followed
by option values. The list must be terminated by WIP_COPT_END .The
options supported by wip_FTPCreateOpts() are:

Option Value Description

WIP_COPT_TYPE ascii Translation of carriage
returns.

‘I’ for image (no translation,
the default)

‘A’ for ASCII

‘E’ for EBCDIC

WIP_COPT_PASSIVE bool Active or Passive

Default is passive mode

WIP_COPT_USER ascii* User name

Default is “anonymous”

WIP_COPT_PASSWORD ascii* Password

Default is
“wipftp@wavecom.com”

WIP_COPT_ACCOUNT ascii* Account

Default is empty string

mailto:wipftp@wavecom.com

FTP Client

The wip_FTPCreateOpts Function

©Confidential Page: 141 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Value Description

WIP_COPT_PEER_PORT u16 Server FTP port

Default is 21

WIP_COPT_LIST_PLUGIN wip_eventHandler_f Plug-in handling the results
from the LIST FTP command
(non-standard, server-
dependent)

WIP_COPT_KEEPALIVE u32 Sends a NOOP command
every n tenth of seconds, so
that the server and any NAT
on the way won't shut down
the connection

8.3.3 Returned Values

The function returns

• the created channel on success

• NULL on error

Note

wip_netInitOpts() should be set with the option
WIP_NET_OPT_SOCK_MAX to perform FTP in active or passive mode.
The minimum number of sockets should be set to

• 3 for active mode (1 server socket and 2 client sockets)

• 2 for passive mode (2 sockets initiated on client side)

FTP Client

The wip_setOpts Function

©Confidential Page: 142 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

8.4 The wip_setOpts Function

The FTP session channel accepts all TCP client options, since an FTP
connection is a TCP socket.

The options supported by wip_setOpts function, applied to FTP are:

Options Value Description

WIP_COPT_END none End of the option

WIP_COPT_KEEPALIVE u32 Sends a NOOP command
every n tenth of seconds, so
that the server and any NAT
on the way won't shut down
the connection

WIP_COPT_SND_BUFSIZE u32 Size of the emission buffer
associated with a socket.

WIP_COPT_RCV_BUFSIZE u32 Size of the reception buffer
associated with a socket.

WIP_COPT_SND_LOWAT u32 Minimum amount of available
space that must be available
in the emission buffer before
triggering a WIP_CEV_WRITE
event.

WIIP_COPT_RCV_LOWAT u32 Minimum amount of available
space that must be available
in the reception buffer before
triggering a WIP_CEV_READ
event.

FTP Client

The wip_setOpts Function

©Confidential Page: 143 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Options Value Description

WIP_COPT_NODELAY bool When set to TRUE, TCP
packets are sent immediately,
even if the buffer is not full
enough

When set to FALSE, the
packets will be sent either,

a) by combining several small
packets into a bigger packet

b) when the data is ready to
send and the stack is idle

Note: Data has to be buffered
and managed by the user
application. There is no
provision in WIP API’s to wait
for data block to be fully filled
before sending it.

WIP_COPT_TOS u8 Type of Service (cf. RFC 791)

WIP_COPT_TTL u8 Time-To-Live for packets.

WIP_COPT_TYPE ascii Transition of carriage returns.

“I” for image (no transition,
the default)

“A” for ASCII

“E” for EBCDIC

WIP_COPT_PASSIVE bool Active or Passive

Default is passive mode

WIP_COPT_LIST_PLUGIN wip_eventHandler_f Plug-in handling the results
from the LIST FTP command
(non-standard, server-
dependent)

Refer section 6.2.7 for more details on wip_setOpts function.

FTP Client

The wip_getOpts Function

©Confidential Page: 144 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

8.5 The wip_getOpts Function

The FTP session channel accepts all TCP client options, since an FTP
connection is a TCP socket.

The options supported by wip_getOpts function, applied to FTP are:

Options Value Description

WIP_COPT_END none End of the option

WIP_COPT_SND_BUFSIZE u32* Size of the emission buffer
associated with a socket.

WIP_COPT_RCV_BUFSIZE u32* Size of the reception buffer
associated with a socket.

WIP_COPT_SND_LOWAT u32* Minimum amount of available
space that must be available in
the emission buffer before
triggering a WIP_CEV_WRITE
event.

WIP_COPT_RCV_LOWAT u32* Minimum amount of available
space that must be available in
the reception buffer before
triggering a WIP_CEV_READ
event.

WIP_COPT_ERROR s32* Number of the last error
experienced by that socket.

WIP_COPT_NREAD u32* Number of bytes that can
currently be read on that
socket.

WIP_COPT_NWRITE u32* Number of bytes that can
currently be written on that
socket. For a PING, size of the
request (default=20)

FTP Client

The wip_getOpts Function

©Confidential Page: 145 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Options Value Description

WIP_COPT_NODELAY bool* When set to TRUE, TCP
packets are sent immediately,
even if the buffer is not full
enough

When set to FALSE, the
packets will be sent either,

a) by combining several small
packets into a bigger packet

b) when the data is ready to
send and the stack is idle

Note: Data has to be buffered
and managed by the user
application. There is no
provision in WIP API’s to wait
for data block to be fully filled
before sending it.

WIP_COPT_TOS u8* Type of Service (cf. RFC 791)

WIP_COPT_TTL u8* Time-To-Live for packets.

WIP_COPT_PORT u16* Port occupied by this socket.

WIP_COPT_STRADDR ascii* buff,

u32 buf_len

Local address of the socket.

WIP_COPT_ADDR wip_in_addr_t* Local address of the socket, as
a 32 bits integer.

WIP_COPT_PEER_PORT u16* Port of the peer socket.

WIP_COPT_PEER_STRADDR ascii* buff,

u32 buf_len

Address of the peer socket. If
set to NULL on a pseudo-
connected UDP socket, remove
the connection.

WIP_COPT_PEER_ADDR wip_in_addr_t* Address of the peer socket, as
a 32 bits integer.

WIP_COPT_SUPPORT_READ none Fails if the channel does not
support wip_read() operations.
If supported, does nothing.

WIP_COPT_SUPPORT_WRITE none Fails if the channel does not
support wip_write() operations.
If supported, does nothing.

FTP Client

The wip_getOpts Function

©Confidential Page: 146 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Options Value Description

WIP_COPT_TYPE ascii Transition of carriage returns.

“I” for image (no transition, the
default)

“A” for ASCII

“E” for EBCDIC

WIP_COPT_PASSIVE bool When set, TCP packets are sent
immediately, even if the buffer
is not full enough.

WIP_COPT_LIST_PLUGIN wip_eventHandler_f Plug-in handling the results
from the LIST FTP command
(non-standard, server-
dependent)

Refer section 6.2.6 for more details on wip_getOpts function.

FTP Client

The wip_close Function

©Confidential Page: 147 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

8.6 The wip_close Function

The FTP session is closed with wip_close function. Refer section 6.2.1 for
more details on wip_close function.

FTP Client

The wip_getFile Function

©Confidential Page: 148 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

8.7 The wip_getFile Function

The function wip_getFile is used to download a file from the FTP server.
Refer section 7.2 for more details on wip_getFile function.

FTP Client

The wip_getFileOpts Function

©Confidential Page: 149 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

8.8 The wip_getFileOpts Function

The wip_getFileOpts function is used to download a file from the FTP
server with user defined options. The options supported by the
wip_getFileOpts function, applied to a FTP are the same WIP_COPT_XXX
options as TCP client channels, plus the options which are mentioned
below:

Option Value Description

WIP_COPT_FILE_NAME ascii*, u32 Name of the file being received

WIP_OFFSET u32 n Restart the transfer at the nth byte

WIP_COPT_END none End of the option

Refer section 7.3 for more details on wip_getFileOpts function.

FTP Client

The wip_putFile Function

©Confidential Page: 150 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

8.9 The wip_putFile Function

The wip_putFile function is used to upload a file to the FTP server. Refer
section 7.4 for more details on wip_putFile function.

FTP Client

The wip_putFileOpts Function

©Confidential Page: 151 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

8.10 The wip_putFileOpts Function

The wip_putFileOpts function is used to upload a file to the server with
the user defined options. The options supported by the wip_putFileOpts
function, applied to a FTP are the same WIP_COPT_XXX options as TCP
client channels, plus the options which are mentioned below:

Option Value Description

WIP_COPT_FILE_NAME ascii*, 32 Name of the file being received

WIP_OFFSET u32 n Restart the transfer at the nth byte

WIP_COPT_END none End of the option

Refer section 7.5 for more details on wip_putFileOpts function.

HTTP Client

The wip_putFileOpts Function

©Confidential Page: 152 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9 HTTP Client

HTTP client provides an application interface for generating HTTP
requests using Wavecom TCP/IP implementation (WIP plug-in). It is based
on WIP abstract channel interface. The following features are provided:

• support for HTTP version 1.1 (default) and 1.0

• persistent connections (with HTTP 1.1)

• connection to a HTTP proxy server

• basic and digest (MD5) authentication

• chunked transfer coding

• setting HTTP request headers

• getting HTTP response headers

• GET, HEADER, POST and PUT methods

HTTP requests are generated in two phases. First, application must
create a HTTP channel with wip_HTTPCreate() or wip_HTTPCreateOpts()
that will store information common to all further HTTP requests like

• HTTP version

• address of proxy server

• HTTP request headers

This channel will also maintain persistent connections. A new channel is
then created for each HTTP request using wip_getFile() or wip_putFile().

HTTP Client

Required Header File

©Confidential Page: 153 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.1 Required Header File

The header file for the HTTP client interface definitions is wip_http.h.

HTTP Client

The wip_httpVersion_e Type

©Confidential Page: 154 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.2 The wip_httpVersion_e Type

The wip_httpVersion_e type defines the HTTP version of the session.

typedef enum {

WIP_HTTP_VERSION_1_0,

WIP_HTTP_VERSION_1_1

} wip_httpVersion_e;

The WIP_HTTP_VERSION_1_0 constant indicates HTTP 1.0.

The WIP_HTTP_VERSION_1_1 constant indicates HTTP 1.1.

HTTP Client

The wip_httpMethod_e Type

©Confidential Page: 155 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.3 The wip_httpMethod_e Type

The wip_httpMethod_e type defines the HTTP method of a message.

typedef enum {

 WIP_HTTP_METHOD_GET,

 WIP_HTTP_METHOD_HEAD,

 WIP_HTTP_METHOD_POST,

 WIP_HTTP_METHOD_PUT,

 WIP_HTTP_METHOD_DELETE,

 WIP_HTTP_METHOD_TRACE,

 WIP_HTTP_METHOD_CONNECT

} wip_httpMethod_e;

HTTP Client

The wip_httpHeader_t Type

©Confidential Page: 156 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.4 The wip_httpHeader_t Type

The wip_httpHeader_t structure defines a HTTP header field.

typedef struct {

 ascii *name; /* field name*/

 ascii *value; /* field value*/

} wip_httpHeader_t;

HTTP Client

The wip_HTTPClientCreate Function

©Confidential Page: 157 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.5 The wip_HTTPClientCreate Function

The wip_HTTPClientCreate function is used to create HTTP session
channels

9.5.1 Prototype

wip_channel_t wip_HTTPClientCreate (wip_eventHandler_f handler,

 void *ctx);

9.5.2 Parameters

handler:

The call back handler which receives the network events related to the
channel. Currently no event is defined so it can be set to NULL.

ctx:

This is the user data to be passed to the event handler every time it is
called.

9.5.3 Returned Values

The function returns

• the created channel

• else NULL on error

HTTP Client

The wip_HTTPClientCreateOpts Function

©Confidential Page: 158 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.6 The wip_HTTPClientCreateOpts Function

The wip_HTTPClientCreateOpts function is used to create HTTP session
channels with user defined options.

9.6.1 Prototype

wip_channel_t wip_HTTPClientCreate (wip_eventHandler_f handler,

 void *ctx,

 ...);

9.6.2 Parameters

The parameters are the same as the parameters for the
wip_HTTPClientCreate function, plus list of option names. The option
names must be followed by option values. The list must be terminated by
WIP_COPT_END. Each option can be followed by one or more values.

Option Value Description

WIP_COPT_END none This option defines the end
of the option list.

WIP_COPT_RCV_BUFSIZE u32 This option sets the size of
the TCP socket receive
buffer.

WIP_COPT_SND_BUFSIZE u32 This option sets the size of
the TCP socket send buffer.

WIP_COPT_PROXY_STRADDR ascii * This option sets the
hostname of the HTTP proxy
server; a NULL value
disables the proxy server.

WIP_COPT_PROXY_PORT u16 This option sets the port
number of the HTTP proxy
server, the default value is
80.

WIP_COPT_HTTP_VERSION wip_httpVersion_e This option defines the HTTP
version to be used by the
session.

HTTP Client

The wip_HTTPClientCreateOpts Function

©Confidential Page: 159 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Value Description

WIP_COPT_HTTP_HEADER ascii *, ascii * This option adds a HTTP
message header field that
will be sent on each request.
The first value is the field
name (without the colon),
the second value is the field
value (without CRLF), and a
NULL value can be passed to
remove a previously defined
header field.

WIP_COPT_HTTP_HEADER_LIST wip_httpHeader_t * This option adds a list of
HTTP message header fields
to send with each request.
The value points to an array
of wip_httpHeader_t
structures, the last element
of the array has its name
field set to NULL.

9.6.3 Returned Values

The function returns

• the created channel on success

• NULL on error

HTTP Client

The wip_getFile Function

©Confidential Page: 160 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.7 The wip_getFile Function

The wip_getFile function is used to send a HTTP request to the given
URL. By default a HTTP GET request is sent, but other HTTP methods can
be sent by this function thanks to the WIP_COPT_HTTP_METHOD option.

When HTTP 1.1 is used, a new TCP channel is not created for each
request destined to the same server or proxy; instead the TCP connection
is maintained by the HTTP session whenever possible.

The events which are received in the event handler are listed below.

Event Description

WIP_CEV_OPEN This event is sent when the response message header has
been received. The wip_getOpts function can be used to
retrieve response header information:

WIP_COPT_HTTP_STATUS_CODE returns the 3-digit response
status code,

WIP_COPT_HTTP_STATUS_REASON returns the reason
phrase,

WIP_COPT_HTTP_HEADER returns the value of response
header fields.

WIP_CEV_READ This event is sent when response message body data is
available for reading by the application.

WIP_CEV_PEER_CLOSE This event is sent after the entire response message, including
response header and response body data, has been received.

WIP_CEV_WRITE This event is sent when request message body data can be
written by the application.

WIP_CEV_ERROR This event is sent when a socket error has occurred.

Refer section 7.2 for more details on wip_getFile function.

HTTP Client

The wip_getFileOpts Function

©Confidential Page: 161 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.8 The wip_getFileOpts Function

The wip_getFileOpts function is used to send a HTTP request to the given
URL with user defined options. The events which are received in the
event handler are same as in section 9.7

The options supported by the wip_getFileOpts function, applied to a HTTP
are:

Option Value Description

WIP_COPT_END none This option defines the end
of the option list.

WIP_COPT_HTTP_METHOD wip_httpMethod_e This option defines the
method of the HTTP
message. The default
method is
WIP_HTTP_METHOD_GET;
the other supported methods
are
WIP_HTTP_METHOD_HEAD,
WIP_HTTP_METHOD_POST
and
WIP_HTTP_METHOD_PUT.

WIP_COPT_HTTP_HEADER ascii *>,<ascii * This option adds a HTTP
message header field to the
request. The first value is the
field name (without the
colon); the second value is
the field value (without
CRLF).

This option overwrite fields
previously defined by the
session channel, a NULL
value can be passed to
remove a previously defined
header field.

WIP_COPT_HTTP_HEADER_LIST wip_httpHeader_t * This option adds a list of
HTTP message header fields
to the request. The value
points to an array of
wip_httpHeader_t structures,
the last element of the array
has its name field set to
NULL.

Refer section 7.3 for more details on wip_getFileOpts function.

HTTP Client

The wip_putFile Function

©Confidential Page: 162 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.9 The wip_putFile Function

The wip_putFile function sends a HTTP PUT request to the given URL. For
more details on wip_putFile function, refer section 7.4

NOTE

The only difference with wip_getFile is the default HTTP method

HTTP Client

The wip_putFileOpts Function

©Confidential Page: 163 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.10 The wip_putFileOpts Function

The wip_putFileOpts function sends a HTTP PUT request to the given URL
with the user defined options. For more details on wip_putFileOpts
function, refer section 7.5

Refer section 9.8 for a description of supported options.

HTTP Client

The wip_read Function

©Confidential Page: 164 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.11 The wip_read Function

The wip_read function is used to read the response message body. This
function is not supported by session channels.

For more details on wip_read function, refer section 6.2.2.

HTTP Client

The wip_write Function

©Confidential Page: 165 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.12 The wip_write Function

The wip_write function is used to write the request message body. Not all
requests have a message body. This function is not supported by session
channels.

For more details on wip_write function, refer section 6.2.4

HTTP Client

The wip_shutdown Function

©Confidential Page: 166 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.13 The wip_shutdown Function

The wip_shutdown function is used on a request channel to signals the
end of the message body, it has no effect if the request has no message
body. This function can also be used to skip data of the response
message.

This function is not supported by session channels.

For more details on wip_shutdown function, refer section 6.5.6

HTTP Client

The wip_setOpts Function

©Confidential Page: 167 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.14 The wip_setOpts Function

The wip_setOpts function is used to set or change options on a session
channel, there is no option currently defined for a request channel.

Each option can be followed by one or more values see
wip_HTTPClientCreate for a description of supported options.

For more details on wip_setOpts function, refer section 6.2.7

HTTP Client

The wip_getOpts Function

©Confidential Page: 168 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.15 The wip_getOpts Function

The wip_getOpts function is used to retrieves options of a session or
request channel

Session channel supports the following options:

Option Value Description

WIP_COPT_END none This option defines the end of
the option list.

WIP_COPT_RCV_BUFSIZE u32 * This option returns the current
size of the TCP socket receive
buffer.

WIP_COPT_SND_BUFSIZE u32 * This option returns the current
size of the TCP socket send
buffer.

WIP_COPT_PROXY_STRADDR ascii *,u32 This option returns the
hostname of the HTTP proxy
server.

WIP_COPT_PROXY_PORT u16 * This option returns the port
number of the HTTP proxy
server.

WIP_COPT_HTTP_VERSION wip_httpVersion_e * This option returns the
selected HTTP version.

HTTP Client

The wip_getOpts Function

©Confidential Page: 169 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Request channel supports the following options:

Option Value Description

WIP_COPT_END none This option defines the end of the
option list.

WIP_COPT_HTTP_STATUS_CODE u32 * This option returns the 3-digit
status code of the response.

WIP_COPT_HTTP_STATUS_REASON ascii *,

u32

This option returns the reason
phrase of the response, the first
value points to the buffer where
the reason phrase is to be written,
the second value is the size of the
buffer.

WIP_COPT_HTTP_HEADER ascii *,

ascii *,

u32

This option returns the value of
the HTTP message header field
with the name given by the first
value, the second value points to
the buffer where the field value is
to be written, the third value is
the size of the buffer.

Refer section 6.2.6 for more details on wip_getOpts function.

HTTP Client

The wip_abort Function

©Confidential Page: 170 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.16 The wip_abort Function

The wip_abort function is only supported by the session channel. This call
closes the current persistent connection, if any. If a request is pending the
request is aborted.

For more details on wip_abort function, refer section 6.5.5

HTTP Client

The wip_close Function

©Confidential Page: 171 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

9.17 The wip_close Function

On the session channel the wip_close function aborts any current request
and release resources associated with the session channel.

NOTE

This does not close the request channel

On a request channel the wip_close function closes the channel and
makes the session ready for another request. When HTTP1.1 is used th
does not close the TCP communication channel, it can be reused if the
next request is sent to the same server. If the request is not completed
when wip_close() is called, the TCP commun

is

ication is reset to indicate to
the server that the request was incomplete.

For more details on wip_close function, refer section 6.2.1

SMTP Client API

The wip_close Function

©Confidential Page: 172 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

10 SMTP Client API

The SMTP (Simple Mail Transfer Protocol) is a standard protocol for mail
transfer and delivery between Internet Hosts in a reliable and efficient
manner. It requests using Wavecom TCP/IP implementation (WIP plug-in).
It is based on WIP abstract channel interface

SMTP mail sending process is generated in several phases:

• First, the application must create a SMTP session/connection
channel with the interface wip_SMTPClientCreate() or
wip_SMTPClientCreateOpts() that will store information common
to all further SMTP requests: address of the mail server,
authentication parameters. This channel will also maintain
persistent connections.

• A DATA channel is then created for each SMTP request using
wip_putFile() or wip_putFileOpts(): the created DATA channel will
store the information as sender name, sender address, (main, cc
and bcc) recipients lists, subject of the mail.

• The message body content is then sent over the DATA channel
with the wip_write() interface.

Figure 14 Mail Sending Steps

SMTP Client API

Required Header File

©Confidential Page: 173 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

10.1 Required Header File

The header file for the SMTP client interface definitions is wip_smtp.h.

SMTP Client API

The Session / Connection Channel

©Confidential Page: 174 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

10.2 The Session / Connection Channel

10.2.1 The wip_SMTPClientCreate Function

The wip_SMTPClientCreate() function is used to create an SMTP SESSION
channel.

10.2.1.1 Prototype

wip_channel_t wip_SMTPClientCreate (ascii *server,

 wip_eventHandler_f handler,

 void *ctx);

10.2.1.2 Parameters

server:

The name of the server: either as a DNS resolved name, or in dotted
notation, e.g. “192.168.1.1”.

handler:

The call back handler which receives the network events related to the
channel.

The events defined in the table below are supported.

Event Description

WIP_CEV_OPEN This event is sent when the session channel is
established

WIP_CEV_ERROR This event is sent when a socket error has occurred.

Use the wip_getOpts() to determine which reason causes
the error

ctx:

This is the user data to be passed to the event handler every time it is
called.

10.2.1.3 Returned value

The function returns

• the created SESSION channel,

• else NULL on error

SMTP Client API

The Session / Connection Channel

©Confidential Page: 175 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

10.2.2 The wip_SMTPClientCreateOpts Function

The wip_SMTPClientCreateOpts() allows the application to pass additional
configuration options

10.2.2.1 Prototype

wip_channel_t wip_SMTPClientCreateOpts (ascii *server,

 wip_eventHandler_f handler,

 void *ctx,

 ...);

10.2.2.2 Parameters

server:

The name of the server: either as a DNS resolved name, or in dotted
notation, e.g. “192.168.1.1”.

handler:

The call back handler which receives the network events related to the
channel.

The events defined in the table below are supported.

Event Description

WIP_CEV_OPEN This event is sent when the session channel is established

WIP_CEV_ERROR
This event is sent when a socket error has occurred.

Use the wip_getOpts() to determine which reason causes
the error

 ...:

List of option names followed by option values. The list must be
terminated by WIP_COPT_END. The supported options are:

Option Value Description

WIP_COPT_END none This option defines the end of the option list.

WIP_COPT_PEER_PORT u16 This option sets the port number of the SMTP
mail server, the default value is 25.

WIP_COPT_USER ascii * username (default is “anonymous”)

Limited to 64 characters

SMTP Client API

The Session / Connection Channel

©Confidential Page: 176 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

WIP_COPT_PASSWORD ascii * password (defaults to “wipsmtp”)

Limited to 64 characters

10.2.2.3 Returned value

The function returns

• the created SESSION channel

• else NULL on error

SMTP Client API

The Session / Connection Channel

©Confidential Page: 177 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

10.2.3 The wip_getOpts Function

The wip_getOpts() function is used to retrieve options of a SESSION
channel. The options supported by the wip_getOpts() function, applied to
SMTP client are:

Option Value Description

WIP_COPT_GREETING ascii * Get the greeting string

WIP_OPT_ERROR none Return the last error code defined in
wip_option_t (wip_channel.h)

WIP_COPT_REC ascii * Verify a user name.

The Email address should be formatted like this:

local-part@domain

Refer section 6.2.6 for more details on the wip_getOpts function.

SMTP Client API

The Session / Connection Channel

©Confidential Page: 178 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

10.2.4 The wip_close Function

On the SESSION channel the wip_close() function aborts any current
request and release resources associated with the session channel.

NOTE

This interface does not close the opened DATA channel. It is the
application which is in charge of closing the opened channels

Refer section 6.2.1 for more details on wip_close function.

SMTP Client API

The Data Channel

©Confidential Page: 179 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

10.3 The Data Channel

10.3.1 The wip_putFileOpts Function

The wip_putFileOpts function allows the application to pass additional
configuration options.

The events defined in the table below are supported.

Event Comment

WIP_CEV_OPEN This event is sent when the DATA channel is established
and ready for data sending

WIP_CEV_WRITE This event is sent when mail body data can be written by
the application.

WIP_CEV_ERROR This event is sent when a socket error has occurred.

Use the wip_getOpts() to determine which reason causes
the error

The options supported by the wip_putFileOpts() function, applied to a
SMTP Client are:

Option Value Comment

WIP_COPT_END none This option defines the end of the option list.

WIP_COPT_SENDERNAME ascii * Sender name

WIP_COPT_SENDER ascii * Sender Email address

WIP_COPT_REC ascii * Recipients addresses list pointer

WIP_COPT_CC_REC ascii * Carbon Copy Recipients addresses list pointer

WIP_COPT_BCC_REC ascii * Blind Carbon Copy Recipients addresses list
pointer

WIP_COPT_SUBJ ascii * Subject of the mail

SMTP Client API

The Data Channel

©Confidential Page: 180 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

NOTE

The Email addresses for the field SENDER / RCPT / CC_RCPT and
BCC_RCPT are provided in literal format, for instance :
sender@wavecom.fr

Concerning the Email list for RCPT / CC_RCPT and BCC_RCPT fields,
separator character is a coma “,”

The RCPT / CC_RCPT and BCC_RCPT lists, the application is
responsible for the ascii * string memory allocation and passes the
address to that string in the options interface (because the entire
string will not be recopied into wip SMTP contexts)

WIP_COPT_SENDER and WIP_COPT_REC are mandatory to use
wip_putFileOpts()

Refer section 7.5 for more details on wip_putFileOpts function.

10.3.2 The wip_getOpts Function

The wip_getOpts function is used to retrieve options of a session or
request channel. The options supported by the wip_getOpts function,
applied to a SMTP Client are:

Option Value Comment

WIP_OPT_ERROR none Return the last error code defined in wip_option_t
(wip_channel.h)

Refer section 6.2.6 for more details on the wip_getOpts function.

SMTP Client API

The Data Channel

©Confidential Page: 181 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

10.3.3 The wip_write Function

The wip_write function is used to write the request mail data through an
opened data channel (previously opened with a wip_putfile function).

NOTE

The wip_write will transfer the mail data in plain text as formatted by
the application without any encoding process. The application is
responsible of choosing the appropriated encoding algorithm for the
data to send.

Moreover, if the 5 characters string <CRLF><CRLF> (hexdecimal:
0x0d 0x0a 0x2E 0x0d 0x0a) is present in the message body, the mail
transfer will be completed and sent; therefore application should
ensure that this 5 characters string is not present in the message
body.

For encoding, the MIME specifications provides the standard
mechanisms for structured message bodies

Refer section 6.2.4 for more details on the wip_write function.

SMTP Client API

The Data Channel

©Confidential Page: 182 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

10.3.4 The wip_close Function

On a DATA channel the wip_close function closes the DATA channel and
completed the current pending mail transaction by sending the mail to
the server and makes the session ready for another mail request.

Refer section 6.2.1 for more details on the wip_close function.

POP3 Client API

The Data Channel

©Confidential Page: 183 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11 POP3 Client API

The POP3 (Post Office Protocol – Version 3) is a standard protocol for mail
retrieving from a mail server by a workstation. It requests using Wavecom
TCP/IP implementation (WIP plug-in). It is based on WIP abstract channel
interface.

POP3 mail retrieving process is generated in several phases:

• First, the application must create a PÖP3 session/connection
channel with the interface wip_POP3ClientCreate() or
wip_POP3ClientCreateOpts() that will store information common
to all further POP3 requests: address of the mail server,
authentication parameters. This channel will also maintain
persistent connections.

• Application should call the wip_listOpts() interface in order to
open a list channel. Once the list channel is opened, the
wip_read() call will retrieve in a structure the list of all the mail Id
and their respective size.

• a DATA channel is then created for each POP3 request using
wip_getFile() or wip_getFileOpts()

wip_read() is then applied to that DATA channel to extract the mail data
until WIP_CEV_PEER_CLOSE event indicating that the end of the specified
mail is entirely read

POP3 Client API

Required Header File

©Confidential Page: 184 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11.1 Required Header File

The header file for the POP3 client interface definitions is: wip_pop3.h.

POP3 Client API

The Session / Connection Channel

©Confidential Page: 185 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11.2 The Session / Connection Channel

11.2.1 The wip_POP3ClientCreate Function

The wip_POP3ClientCreate function is used to create POP3 session
channels.

11.2.1.1 Prototype

wip_channel_t wip_POP3ClientCreate (ascii *server,

 wip_eventHandler_f handler,

 void *ctx);

11.2.1.2 Parameters

server:

The name of the server: either as a DNS resolved name, or in dotted
notation, e.g. “192.168.1.1”.

handler:

The call back handler which receives the network events related to the
channel.

The events defined in the table below are supported.

Event Description

WIP_CEV_OPEN This event is sent when the session channel is established

WIP_CEV_DONE This event is sent when the mail listing is completed

This event is sent when the mail deleting is completed

WIP_CEV_ERROR This event is sent when a socket error has occurred.

Use the wip_getOpts() to determine which reason causes the
error

ctx:

This is the user data to be passed to the event handler every time it is
called.

11.2.1.3 Returned value

The function returns

• the created SESSION channel

• else NULL on error

POP3 Client API

The Session / Connection Channel

©Confidential Page: 186 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11.2.2 wip_POP3ClientCreateOpts

The wip_POP3ClientCreateOpts allows the application to pass additional
configuration options.

11.2.2.1 Prototype

wip_channel_t wip_POP3ClientCreateOpts (ascii *server,

 wip_eventHandler_f handler,

 void *ctx,

 ...);

11.2.2.2 Parameters

server:

The name of the server: either as a DNS resolved name, or in dotted
notation, e.g. “192.168.1.1”.

handler:

The call back handler which receives the network events related to the
channel.

The events defined in the table below are supported.

Event Description

WIP_CEV_OPEN This event is sent when the session channel is established

WIP_CEV_DONE
This event is sent when the mail listing is completed

This event is sent when the mail deleting is completed

WIP_CEV_ERROR
This event is sent when a socket error has occurred.

Use the wip_getOpts() to determine which reason causes the
error

ctx:

This is the user data to be passed to the event handler every time it is
called.

...:

A list of configuration options, the last option must be WIP_COPT_END.
Each option can be followed by one or more values, the supported
options and their associated values are defined in the table below.

POP3 Client API

The Session / Connection Channel

©Confidential Page: 187 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Option Value Description

WIP_COPT_END none This option defines the end of the option
list.

WIP_COPT_PEER_PORT u16 This option sets the port number of the
POP3 mail server, the default value is 110.

WIP_COPT_USER ascii * Username (default is “anonymous”)

Limited to 64 characters

WIP_COPT_PASSWORD ascii * Password (defaults to “wippop3”)

Limited to 64 characters

11.2.2.3 Returned Value

The function returns

• the created SESSION channel

• else NULL on error

POP3 Client API

The Session / Connection Channel

©Confidential Page: 188 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11.2.3 The wip_getOpts Function

The wip_getOpts function is used to retrieve options of a SESSION
channel. The options supported by the wip_getOpts function, applied to a
POP3 Client are:

Option Value Comment

WIP_COPT_GREETING ascii * Get the greeting string

WIP_OPT_ERROR none Return the last error code defined in wip_option_t
(wip_channel.h)

Refer section 6.2.6 for more details on the wip_getOpts function.

POP3 Client API

The Session / Connection Channel

©Confidential Page: 189 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11.2.4 The wip_listOpts Function

The wip_listOpts function is used open a list channel in order to list all the
available mails to be retrieved.

11.2.4.1 Prototype

wip_channel_t wip_listOpts (wip_channel_t session,

 ascii *name,

 wip_eventHandler_f handler,

 void *ctx,

 ...)

11.2.4.2 Parameters

session:

The POP3 SESSION channel

name:

This field is ignored

handler:

The call back handler which receives the events related to the channel.

The events defined in the table below are supported.

ctx:

It is the user data to be passed to the event handler every time it is called.

Event Comment

TBD

WIP_CEV_ERROR This event is sent when a socket error has occurred.

Use the wip_getOpts() to determine which reason causes the
error

...:

A list of configuration options, the last option must be WIP_COPT_END.
Each option can be followed by one or more values, see
wip_SMTPClientCreate() for a description of supported options.

POP3 Client API

The Session / Connection Channel

©Confidential Page: 190 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11.2.4.3 Returned values

The function returns

• OK on success

• else a negative error code

POP3 Client API

The Session / Connection Channel

©Confidential Page: 191 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11.2.5 The wip_read Function

The wip_read function is used to read the listed file structure from the list
channel.

Refer section 6.2.2 for more details on the wip_read function.

POP3 Client API

The Session / Connection Channel

©Confidential Page: 192 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11.2.6 The wip_deleteFile Function

The wip_deleteFile function is used to mark as deleted the specified mail
Id.

Refer section 7.8 for more details on the wip_deleteFile function.

POP3 Client API

The Session / Connection Channel

©Confidential Page: 193 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11.2.7 The wip_close Function

On the SESSION channel the wip_close function aborts any current
request and release resources associated with the session channel.

NOTE

This interface does not close the opened DATA channel. It is the
application which is in charge of closing the opened channels.

Refer section 6.2.1 for more details on the wip_close function.

POP3 Client API

The Data Channel

©Confidential Page: 194 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11.3 The Data Channel

11.3.1 The wip_getFile Function

The wip_getFile function is used to open a DATA channel in order to
retrieve a mail.

Following events are supported.

Event Description

WIP_CEV_OPEN This event is sent when the DATA channel is established
and ready for data reading

WIP_CEV_READ This event is sent when mail body data can be read by the
application.

WIP_CEV_PEER_CLOSE This event is sent when the entire mail has been read (end
of file)

WIP_CEV_ERROR This event is sent when a socket error has occurred.

Use the wip_getOpts() to determine which reason causes
the error

Refer section 7.2 for more details on wip_getFile function.

POP3 Client API

The Data Channel

©Confidential Page: 195 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11.3.2 The wip_getFileOpts Function

The wip_getFileOpts allows the application to pass additional
configuration options.

The events defined in the table below are supported.

Event Description

WIP_CEV_OPEN This event is sent when the DATA channel is established
and ready for data reading

WIP_CEV_READ This event is sent when mail body data can be read by the
application.

WIP_CEV_PEER_CLOSE This event is sent when the entire mail has been read (end
of file)

WIP_CEV_ERROR This event is sent when a socket error has occurred.

Use the wip_getOpts() to determine which reason causes
the error

The options supported by the wip_getFileOpts() function, applied to a
POP3Client are:

Option Value Description

WIP_COPT_END none This option defines the end of the option list.

WIP_COPT_TOP u32 Retrieve the header of the message with the specified
number of lines

TBD

Refer section 7.3 for more details on wip_getFileOpts function.

POP3 Client API

The Data Channel

©Confidential Page: 196 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11.3.3 The wip_read Function

The wip_read function is used to read the request message body.

Refer section 6.2.2 for more details on wip_read function.

POP3 Client API

The Data Channel

©Confidential Page: 197 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11.3.4 The wip_getOpts Function

The wip_getOpts function is used to retrieves options of a DATA channel.

Data channels support the following options:

Option Value Comment

WIP_COPT_END none This option defines the end of the
option list.

TBD

Refer section 6.2.6 for more details on the wip_getOpts function.

POP3 Client API

The Data Channel

©Confidential Page: 198 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

11.3.5 The wip_close Function

On a DATA channel the wip_close function closes the channel and makes
the session ready for another request. If the request is not completed
when wip_close() is called, the TCP communication is reset to indicate to
the server that the request was incomplete.

Refer section 6.2.1 for more details on the wip_close function.

Examples of Application

Initializing a GPRS Bearer

©Confidential Page: 199 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

12 Examples of Application

12.1 Initializing a GPRS Bearer
#include <wip_bearer.h>

/* bearer events handler */

void myHandler(wip_bearer_t br, s8 event, void *context)

{

 switch(event) {

 case WIP_BEV_IP_CONNECTED:

 /*IP connectivity we can start IP application from here*/

 break;

 case WIP_BEV_IP_DISCONNECTED:

 /*stop IP application*/

 break;

 /* other events: */

 default:

 /*cannot start bearer: report error to higher levels*/

 break;

 }

}

/* bearer handle */

wip_bearer_t myBearer;

/* initialize and start GPRS bearer */

bool myConnectToGPRS(void)

{

 /* open bearer and install our event handler */

 if(wip_bearerOpen(&myBearer, "GPRS", myHandler, NULL) != 0) {

 /* cannot open bearer */

 return FALSE;

 }

Examples of Application

Initializing a GPRS Bearer

©Confidential Page: 200 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

 /* configure GPRS interface */

 if(wip_bearerSetOpts (myBearer,

 WIP_BOPT_GPRS_APN, "my_apn",

 WIP_BOPT_ LOGIN, "my_login",

 WIP_BOPT_ PASSWORD, "my_password",

 WIP_BOPT_END) != 0) {

 /* cannot configure bearer */

 wip_bearerClose(myBearer);

 return FALSE;

 }

 /* start connection */

 if(wip_bearerStart(myBearer) != 0) {

 /* cannot start bearer */

 bearerClose(myBearer);

 return FALSE;

 }

 /* connection status will be reported to the event handler */

 return TRUE;

}

Examples of Application

Simple TCP Client/Server

©Confidential Page: 201 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

12.2 Simple TCP Client/Server

In this example, the server can receive requests “name”, “forename”, or
“phone”, and will answer with the appropriate identification string. It can
also receive “quit”, in which case it sends a farewell message and closes
the connection.

12.2.1 Server

#define SERVER_PORT 1234

#define MSG_WELCOME "Hello"

#define MSG_SYNTAX_ERROR "Unrecognized request.”\

"Use one of NAME, FORENAME, PHONE, QUIT.\n"

#define MY_NAME "Wavecom"

#define MY_FORENAME "User"

#define MY_NAME "+33 46 29 40 39"

void commHandler(wip_event_t *ev, void *ctx) {

 u8 *buffer[16];

 s32 nread;

 wip_channel_t c = ev->channel;

 switch(ev->kind) {

 case WIP_CEV_OPEN:

 wip_write(c, MSG_WELCOME, strlen(MSG_WELCOME);

 break;

 case WIP_CEV_READ:

 nread = wip_read(c, buffer, sizeof(buffer));

 if(!strncasecmp(buffer, "name", nread))

 wip_write(c, MY_NAME, strlen(MY_NAME));

 else if(!strncasecmp(buffer, "forename", nread))

Examples of Application

Simple TCP Client/Server

©Confidential Page: 202 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

 wip_write(c, MY_FORENAME, strlen(MY_FORENAME));

 else if(!strncasecmp(buffer, "phone", nread))

 wip_write(c, MY_PHONE, strlen(MY_PHONE));

 else if(!strncasecmp(buffer, "quit", nread))

 wip_close(c);

 else

 wip_write(c, MSG_SYNTAX_ERROR, strlen(MSG_SYNTAX_ERROR));

 return;

 case WIP_CEV_WRITE:

 case WIP_CEV_ERROR:

 case WIP_CEV_PEER_CLOSE:

 return;

 }

}

void initServer() {

 wip_channel_t server = wip_TCPServerCreate(SERVE_PORT_NUMBER,
&commHandler, NULL);

}

12.2.2 Client

The client will request, receive and display the forename, name and
phone from the server, then quit by sending the “quit” request to the
server. The state of the client is maintained by an enum state as the event
handler’s context.

Maintaining the state through a state machine is quite typical of callback-
based applications. In a multi-threaded application, the thread is
maintained by putting the threads in idle mode and reviving them when
an event occurs to them. Here, the event handler is called, from its first
line, each time an event happens. The state can be used to remember
what has already been done, and what the next thing to do is.

#define SERVER_PORT 1234

#define SERVER_ADDRESS "192.168.1.4"

Examples of Application

Simple TCP Client/Server

©Confidential Page: 203 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

enum state {

 JUST_OPEN,

 FORENAME_REQUEST_SENT,

 NAME_REQUEST_SENT,

 PHONE_REQUEST_SENT,

 QUIT_REQUEST_SENT };

void commHandler(wip_event_t *ev, enum state *ctx) {

 u8 *buffer[256];

 s32 nread;

 wip_channel_t c = ev->channel;

 switch(ev->kind) {

 case WIP_CEV_READ:

 nread = wip_read(c, buffer, sizeof(buffer) - 1);

 buffer[nread] = '\0';

 switch(*ctx) {

 case JUST_OPEN:

 printf("Received greeting from server: %s\n", buffer);

 wip_write(c, "NAME", strlen("NAME"));

 *ctx = FORENAME_REQUEST_SENT;

 break;

 case FORENAME_REQUEST_SENT:

 printf("Forename:\t%s\n", buffer);

 wip_write(c, "FORENAME", strlen("FORENAME"));

 *ctx = NAME_REQUEST_SENT;

 break;

 case NAME_REQUEST_SENT:

 printf("Name:\t%s\n", buffer);

 wip_write(c, "PHONE", strlen("PHONE"));

 *ctx = PHONE_REQUEST_SENT;

 break;

 case PHONE_REQUEST_SENT:

Examples of Application

Simple TCP Client/Server

©Confidential Page: 204 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

 printf("Phone:\t%s\n", buffer);

 wip_write(c, "QUIT", strlen("QUIT"));

 *ctx = QUIT_REQUEST_SENT;

 break;

 case QUIT_REQUEST_SENT:

 printf("Server says goodbye:\t%s\n", buffer);

 wip_close(c);

 break;

 }

 }

 case WIP_CEV_WRITE:

 case WIP_CEV_ERROR:

 case WIP_CEV_PEER_CLOSE:

 break;

}

void startClient() {

 static enum state state = JUST_OPEN;

 wip_channel_t client = wip_TCPClientCreate(SERVER_ADDRESS,

 SERVER_PORT,

 &commHandler,

 &state);

}

Examples of Application

Advanced TCP Example

©Confidential Page: 205 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

12.3 Advanced TCP Example

This is a complex example. It is a rudimentary chat server. Clients
connect to the server, and first send an integer, known as their ID. If the
client is the first one to send this ID, then it is put on hold until a second
one sends the same ID (state WAIT_FOR_SECOND_CX). If it is the second
one to send this ID, then it is connected to the first client with this ID.
Once the two clients are connected, everything written by one client is
forwarded to the dual client. If there are already two clients with this ID,
any attempt by a third client to use the same ID is rejected (message
EMSG_3RD_CONNECT).

/* How many connection can be handled simultaneously */

#define CX_NUM 16

/* Port number of the server */

#define SERVER_PORT 1235

/* Error messages */

#define EMSG_NO_CTX "Error: no available context on server\n"

#define EMSG_3RD_CONNECT "Error: you're the 3rd to request that id\n"

/* Connection context */

struct {

 /* Number identifying the connection */

 s32 cx_id;

 enum {

 /* This context is currently unused */

 FREE,

 /* One connection has been made, waiting for the second */

 WAIT_FOR_SECOND_CX,

 /* Both clients are connected, they can chat together */

 CONNECTED

 } state;

 /* First client to connect */

 wip_channel_t cx0;

 /* Second client to connect */

 wip_channel_t cx1;

Examples of Application

Advanced TCP Example

©Confidential Page: 206 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

} cx_state;

/* Connection contexts pool */

static struct cx_state cx_table[CX_NUM];

/* Handling events on communication sockets */

void commHandler(wip_event_t *ev, struct cx_state *ctx) {

 s32 err;

 wip_channel_t c = ev->channel;

 switch(ev->kind) {

 case WIP_CEV_READ:

 /* Some data arrived, that can be read */

 if(NULL == ctx) {

 /* unconnected socket: read id */

 s32 i, id;

 /*wait for more data*/

 if(ev->content.read.readable < sizeof(id))

 return;

 wip_read(c, &id, sizeof(id));

 /* find any open cx with that id */

 for(i = 0; i < CX_NUM; i++) {

 if(cx_table[i].cx_id == id) {

 ctx = cx_table + i;

 switch(ctx->state) {

 case FREE:

 /* This entry is unused, its cx_id field is meaningless;

 continue to the next ctx. */

 break;

Examples of Application

Advanced TCP Example

©Confidential Page: 207 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

 case CONNECTED:

 /* Only two connections can use a given id */

 wip_write(c, EMSG_3RD_CONNECT, strlen(EMSG_3RD_CONNECT));

 wip_close(c);

 return;

 case WAITING_FOR_SECOND_CX:

 /* This is the 2nd connection with this id: complete the ctx,

 and register it with that channel */

 ctx->cx1 = c;

 ctx->cx_state = CONNECTED;

 wip_setCtx(c, ctx);

 return;

 }

 }

 }

 /* No connection found with this id; find a FREE ctx in the pool */

 for(i = 0; i < CX_NUM; i++) {

 if(FREE == cx_table[i].cx_state) {

 ctx = cx_table + i;

 wip_setCtx(c, ctx);

 ctx->cx0 = c;

 ctx->cx_state = WAITING_FOR_SECOND_CX;

 if(err < 0) goto error;

 return;

 }

 }

 /* No free cx context available in the pool */

 wip_write(c, NO_CTX_MSG, strlen(NO_CTX_MSG));

 wip_close(c);

 return;

Examples of Application

Advanced TCP Example

©Confidential Page: 208 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

 } else {

 /* [ev->kind == WIP_CEV_READ && ctx != NULL]: connection is already
established */

 void *buffer;

 wip_channel_t dual = (ctx->cx0 == c) ? ctx->cx1 : ctx->cx0;

 s32 writeable_on_dual;

 s32 readable = ev->content.read.readable;

 wip_getOpts(dual,

 WIP_COPT_NWRITE, &writeable_on_dual,

 WIP_COPT_END);

 if(writeable_on_dual < readable) return;

 buffer = malloc(readable);

 wip_read(c, buffer, readable);

 wip_write(dual, buffer, readable);

 free(buffer);

 return;

 }

 case WIP_CEV_WRITE:

 /* There is some buffer space to write... Yet I've got nothing

 interesting to write in it: I'll write something when I'll receive

 something to read! */

 return;

 case WIP_CEV_ERROR:

 case WIP_CEV_PEER_CLOSE:

 /* If a socket closes, or something goes wrong, close the dual

 socket */

 if(ctx != NULL && ctx->cx_state == CONNECTED) {

Examples of Application

Advanced TCP Example

©Confidential Page: 209 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

 wip_close(ctx->cx0);

 wip_close(ctx->cx1);

 ctx->state = FREE;

 } else if(ctx != NULL) {

 wip_close(c);

 ctx->state = FREE;

 }

 else wip_close(c);

 return;

 }

}

/* Starting the server */

void initServer() {

 s32 i;

 wip_channel_t server;

 for(i = 0; i < CX_NUM; i++) cx_table[i].state = FREE;

 server = wip_TCPServerCreate(SERVER_PORT, commHandler, NULL);

}

Examples of Application

Simple FTP Example

©Confidential Page: 210 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

12.4 Simple FTP Example

This program downloads a file named data.bin from the server
ftp.wavecom.com and puts it in memory. However, since it makes no
assumptions on the file’s size, it requests it with wip_getFileSize() before
allocating the buffer. Once the whole file has been read, the resulting
buffer is passed to a DoSomethingWithIt() function.

For the sake of simplicity, this sample does no error checking.

#define SERVER "ftp.wavecom.com"

#define FILE_NAME "data.bin"

static u8 *buffer;

static int buf_size;

/* Handling events on the connection channel.*/

static evh_cx(wip_event_t *ev, void *ctx) {

 switch(ev->kind) {

 case WIP_CEV_OPEN:

 /* FTP connection just established*/

 wip_getFileSize(ev->channel, FILE_NAME);

 break;

 case WIP_CEV_DONE:

 /* response to the wip_getFileSize() call arrived. */

 buf_size = ev->content.done.aux;

 /* allocate the buffer */

 buffer = adl_getMem(buf_size);

 /* And start filling it with data */

 wip_getFile(ftp_cx, FILE_NAME, evh_data, NULL);

 break;

 }

 }

/* Handling events on the file transfer channel. */

static void evh_data(wip_event_t *ev, void *ctx) {

 static int nwritten;

 switch(ev->kind) {

Examples of Application

Simple FTP Example

©Confidential Page: 211 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

 case WIP_CEV_OPEN:

 nwritten = 0;

 break;

case WIP_CEV_READ:

 nwritten += wip_read(ev->channel, buffer + nwritten,

 buf_size - nwritten);

 /* We know that the whole file content is smaller than buf_size*/

 ASSERT(nwritten <= buf_size);

 break;

 case WIP_CEV_PEER_CLOSE:

 wip_close(ev->channel);

 DoSomethingWithIt(buffer, nwritten);

 break;

 }

}

/* When WIP is ready, open the FTP server */

void evh_bearer(wip_bearer_t b, s8 event, void *ctx) {

 if(WIP_BEV_IP_CONNECTED == event)

 wip_FTPCreate(SERVER, evh_cx, NULL);

}

int adl_main() {

 ...

 /* Configure a bearer. */

 wip_bearerOpen(..., ..., evh_bearer, NULL);

 ...

 }

In a multithreaded environment, where blocking calls are acceptable,
everything could have been put in a single thread, which would have
been put asleep when waiting for events. The program would have
looked like:

Examples of Application

Simple FTP Example

©Confidential Page: 212 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

wip_blockingBearerStart(&bearer, …);

ftpcx = wip_blockingFTPCreate(SERVER);

size = wip_blockingGetFileSize(ftpcx, FILE_NAME);

buffer = adl_getMem(size);

nwritten = 0;

transfer = wip_blockingGetFile(ftpcx, FILE_NAME);

while(WIP_CSTATE_READY == wip_getState(transfer))

 nwritten += wip_blockingRead(transfer, buffer + nwritten,

 size – nwritten);

wip_close(transfer);

doSomethingWithIt(buffer);

Notice that wip_blockingXxx() calls don’t exist in the current API; the
snippet above is to be read as pseudo-code.

Examples of Application

Simple FTP Example

©Confidential Page: 213 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

Figure 15 State machine of a simple FTP application

The corresponding state machine is represented above. It has the
following noticeable property: each (event, receiver) couple occurs only
once in the machine, which means there is no need to explicitly
remember the machine’s state: it can be deduced from the event. In a
more complex example, it would be necessary to:

• create an enum type listing the possible state

• test the current state when an event happens

• update the state after an action is performed

Examples of Application

Simple FTP Example

©Confidential Page: 214 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

In the event handlers, the switch statements would have looked like:

enum { STATE_YYY0, STATE_YYY1, /* etc. */ } state;

void evh_xxx(wip_event_t *ev, void *ctx) {

 switch(ev->kind) {

 case WIP_CEV_XXX0: switch(state) {

 case STATE_YYY0:

 /* Do whatever must be done when event XXX0 happens to ev->channel

 when in state YYY0 */

 someAction();

 /* relevant state transition. */

 state = STATE_YYY3;

 break;

 case STATE_YYY1:

 someOtherAction();

 state = STATE_YYY2;

 break;

 /* etc. */

 }

 case WIP_CEV_XXX1: switch(state) {

 /* etc. */

 }

 /* etc. */

 }

}

Examples of Application

Advanced FTP Example

©Confidential Page: 215 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

12.5 Advanced FTP Example

sing API. It recursively
ds as

 concurrently; the program detects whenever TCP
rror WIP_CERR_RESOURCES).

This program makes use of the file brow
downloads every files in an FTP server directory. As many downloa
possible are started
sockets are used (e

TBD

Examples of Application

Simple HTML Example

©Confidential Page: 216 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

TML Example

ple shows how to get a HTML page from a web server.

12.6 Simple H

This exam

/* HTTP session */

wip_channel_t http;

/* event handler callback */

void http_event(wip_event_t *ev, void *ctx)

{

 wip_channel_t ch;

 s32 ret;

 /* get originating channel */ ch = ev->channel;

 switch(ev->kind) {

 case WIP_CEV_OPEN:

 /* get status code */

 wip_getOpts (ch,

 WIP_COPT_HTTP_STATUS_CODE, &ret,

 WIP_COPT_END);

 if(ret != 200) {

 /* not OK... */

 }

 break;

 case WIP_CEV_READ:

 /* read html page */

 while((ret = wip_read(ch, buf, sizeof(buf))) > 0) {

 /* ...process html data... */

 }

 break;

 case WIP_CEV_PEER_CLOSE:

Examples of Application

Simple HTML Example

©Confidential Page: 217 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

 /* html page has been received */

 l wip_c ose(ch);

 break;

 case WIP_CEV_ERROR:

 /* socket error... close channel */

 wip_close(ch);

 break;

 }

}

/* Application */

void MyFunction(void)

{

 /* Setup HTTP session */

 http = wip_HTTPClientCreateOpts(

 NULL, NULL,

 WIP_COPT_HTTP_HEADER, "User-Agent", "WIP-HTTP-Client/1.0",

 WIP_COPT_END);

 /* Get a HTML page */

 wip_getFileOpts (http,

 "http://www.wavecom.com",

 http_event, NULL,

 WIP_COPT_HTTP_HEADER, "Accept", "text/html",

 WIP_COPT_END);

}

Examples of Application

Simple SMTP Example

©Confidential Page: 218 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

12.7 Simple SMTP Example

This example shows how to send an Email through the SMTP client
interface.

TBD

Examples of Application

Simple POP3 Example

©Confidential Page: 219 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

12.8 Simple POP3 Example

 send an Email through the SMTP client
interface.

This example shows how to

TBD

Error Codes

IP Communication Plug-In Initialization and Configuration error codes

©Confidential Page: 220 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

 Communic g lization and
ration error codes

13 Error Codes

13.1 IP ation Plu -In Initia
Configu

Error Code Error Value Description

WIP_NET_ERR_NO_MEM -20 Memory allocation error

WIP_NET_ERR_OPTION -21 Invalid option

WIP_NET_ERR_PARAM alue -22 Invalid option v

WIP_NET_ERR_INIT_FAILED led -23 Initialization fai

Error Codes

Bearer service error codes

©Confidential Page: 221 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

13.2 Bearer service error codes
Error Code Error Value Description

WIP_BERR_NO_DEV -20 The device does not exist

WIP_BERR_ALREADY -21 The device is already opened

WIP_BERR_NO_IF -22 The network interface is not available

WIP_BERR_NO_HDL -23 No free handle

WIP_BERR_BAD_HDL -24 Invalid handle

WIP_BERR_OPTION -25 Invalid option

WIP_BERR_PARAM -26 Invalid option value

WIP_BERR_OK_INPROGRESS
-27 Connection started, an event will be

sent after completion

WIP_BERR_BAD_STATE -28 The bearer is not stopped

WIP_BERR_DEV -29 Error from link layer initialization

WIP_BERR_NOT_SUPPORTED -30 Not a GSM bearer

WIP_BERR_LINE_BUSY -31 Line busy

WIP_BERR_NO_ANSWER -32 No answer

WIP_BERR_NO_CARRIER -33 No carrier

WIP_BERR_NO_SIM -34 No SIM card inserted

WIP_BERR_PIN_NOT_READY -35 PIN code not entered

WIP_BERR_GPRS_FAILED -36 GPRS setup failure

WIP_BERR_PPP_LCP_FAILED -37 LCP negotiation failure

WIP_BERR_PPP_AUTH_FAILED -38 PPP authentication failure

WIP_BERR_PPP_IPCP_FAILED -39 IPCP negotiation failure

WIP_BERR_PPP_LINK_FAILED
-40 PPP peer not responding to echo

requests

WIP_BERR_PPP_TERM_REQ -41 PPP session terminated by peer

WIP_BERR_CALL_REFUSED -42 Incoming call refused

Error Codes

Channel error codes

©Confidential Page: 222 / 222

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior
written agreement.

WM_DEV_OAT_UGD_021 March 16, 2007

13.3 Channel error codes
Error Code Error Value Description

WIP_CERR_ABORTED -1000 Tried to read/write an aborted TCP
client.

WIP_CERR_CSTATE -999 The channel is not in
WIP_CSTATE_READY state.

WIP_CERR_NOT_SUPPORTED -998 The option is not supported by
channel.

WIP_CERR_OUT_OF_RANGE -997 The option value is out of range.

WIP_CERR_MEMORY -996 adl_memGet() memory allocation
failure.

WIP_CERR_INTERNAL -995 WIP internal error (probable bug,
shouldn’t happen).

WIP_CERR_INVALID -994 Invalid option or parameter value.

WIP_CERR_DNS_FAILURE -993 Couldn’t resolve a name to an IP
address.

WIP_CERR_RESOURCES -992 No more TCP buffers available.

WIP_CERR_PORT_IN_USE -991 TCP server port already used.

WIP_CERR_REFUSED -990 TCP connection refused by server.

WIP_CERR_HOST_UNREACHABLE -989 No route to host.

WIP_CERR_NETWORK_UNREACHABLE -988 No network reachable at all.

WIP_CERR_PIPE_BROKEN -987 TCP connection broken.

WIP_CERR_TIMEOUT -986 Timeout (for DNS request, TCP
connection, PING response…)

WAVECOM S.A. - 3 esplanade du Foncet - 92442 Issy-les-Moulineaux Cedex - France - Tel: +33(0)1 46 29 08 00 - Fax: +33(0)1 46 29 08 08
Wavecom, Inc. - 4810 Eastgate Mall - Second Floor - San Diego, CA 92121 - USA - Tel: +1 858 362 0101 - Fax: +1 858 558 5485
WAVECOM Asia Pacific Ltd. - 4/F, Shui On Centre - 6/8 Harbour Road - Hong Kong - Tel: +852 2824 0254 - Fax: +852 2824 025

	Introduction
	Related Documents
	Abbreviations and Glossary
	Glossary

	Global Architecture
	Concepts
	Feature Description
	New Interface
	Use Cases
	Channels Logical Hierarchy
	Channel: Abstract, Basic I/O Handle
	Data Channel: Abstract Data Transfer Handle
	TCPServer: Server TCP Socket
	Spawning

	TCPClient: Communication TCP Socket
	UDP: UDP Socket

	Options
	Option Series
	Example

	Initialization of the IP Connectivity Library
	Required Header File
	The wip_netInit Function
	Prototype
	Parameters
	Returned Values

	The wip_netInitOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_netExit Function
	Prototype
	Parameters
	Returned Values

	The wip_netSetOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_netGetOpts Function
	Prototype
	Parameters
	Returned Values

	IP Bearer Management
	State Machine
	Required Header File
	IP Bearer Management Types
	The wip_bearer_t Structure
	The wip_bearerType_e Type
	The wip_bearerInfo_t Structure
	The wip_ifindex_t Structure

	The wip_bearerOpen Function
	Prototype
	Parameters
	Returned Values

	The wip_bearerClose Function
	Prototype
	Parameters
	Returned Values

	The wip_bearerSetOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_bearerGetOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_bearerStart Function
	Prototype
	Parameters
	Events
	Returned Values

	The wip_bearerAnswer Function
	Prototype
	Parameters
	Events
	Returned Values

	The wip_bearerStartServer Function
	Prototype
	Parameters
	Events
	Returned Values

	The wip_bearerStop Function
	Prototype
	Parameters
	Events
	Returned Values

	The wip_bearerGetList Function
	Prototype
	Parameters
	Returned Values

	The wip_bearerFreeList Function
	Prototype
	Parameters
	Returned Values

	Internet Protocol Support Library
	Required Header File
	The wip_in_addr_t Structure
	The wip_inet_aton Function
	Prototype
	Parameters
	Returned Values

	The wip_inet_ntoa Function
	Prototype
	Parameters
	Returned Values

	Socket Layer
	Common Types
	Channels
	Event Structure
	Opaque Channel Type
	Event Handler Callback wip_eventHandler_f
	Options

	Common Channel Functions
	The wip_close Function
	Prototype
	Parameters
	Returned Values

	The wip_read Function
	Prototype
	Parameters
	Returned Values

	The wip_readOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_write Function
	Prototype
	Parameters
	Returned Values

	The wip_writeOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_getOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_setOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_setCtx Function
	Prototype
	Parameters
	Returned Values

	The wip_getState Function
	Prototype
	Parameter
	Returned Values

	UDP: UDP Sockets
	State Charts
	The wip_UDPCreate Function
	Prototype
	Parameters
	Returned Values

	The wip_UDPCreateOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_getOpts Function
	The wip_setOpts Function
	The wip_readOpts Function
	The wip_writeOpts Function

	TCPServer: Server TCP Sockets
	The wip_TCPServerCreate Function
	Prototype
	Parameters
	Returned Values

	The wip_TCPServerCreateOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_getOpts Function
	The wip_setOpts Function

	TCPClient: TCP Communication Sockets
	Read/Write Events
	Read Events
	Write Events

	Statecharts
	The wip_TCPClientCreate Function
	Prototype
	Parameters
	Returned Values

	The wip_TCPClientCreateOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_abort Function
	Prototype
	Parameters
	Returned Values

	The wip_shutdown Function
	Prototype
	Parameters
	Returned Values

	The wip_getOpts Function
	The wip_setOpts Function
	The wip_readOpts Function
	The wip_writeOpts Function

	Ping: ICMP Echo Request Handler
	The wip_pingCreate Function
	Prototype
	Parameters
	Returned Values

	The wip_pingCreateOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_getOpts Function
	The wip_setOpts Function

	FILE
	Required Header File
	The wip_getFile Function
	Prototype
	Parameters
	Returned Values

	The wip_getFileOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_putFile Function
	Prototype
	Parameters
	Returned Values

	The wip_putFileOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_cwd Function
	Prototype
	Parameters
	Returned Values

	The wip_mkdir Function
	Prototype
	Parameters
	Returned Values

	The wip_deleteFile Function
	Prototype
	Parameters
	Returned Values

	The wip_deleteDir Function
	Prototype
	Parameters
	Returned Values

	The wip_renameFile Function
	Prototype
	Parameters
	Returned Values

	The wip_getFileSize Function
	Prototype
	Parameters
	Returned Values

	The wip_list Function
	Prototype
	Parameters
	Returned Values

	The wip_fileInfoInit Function
	Prototype
	Parameters
	Returned Values

	FTP Client
	Required Header File
	The wip_FTPCreate Function
	Prototype
	Parameters
	Returned Values

	The wip_FTPCreateOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_setOpts Function
	The wip_getOpts Function
	The wip_close Function
	The wip_getFile Function
	The wip_getFileOpts Function
	The wip_putFile Function
	The wip_putFileOpts Function

	HTTP Client
	Required Header File
	The wip_httpVersion_e Type
	The wip_httpMethod_e Type
	The wip_httpHeader_t Type
	The wip_HTTPClientCreate Function
	Prototype
	Parameters
	Returned Values

	The wip_HTTPClientCreateOpts Function
	Prototype
	Parameters
	Returned Values

	The wip_getFile Function
	The wip_getFileOpts Function
	The wip_putFile Function
	The wip_putFileOpts Function
	The wip_read Function
	The wip_write Function
	The wip_shutdown Function
	The wip_setOpts Function
	The wip_getOpts Function
	The wip_abort Function
	The wip_close Function

	SMTP Client API
	Required Header File
	The Session / Connection Channel
	The wip_SMTPClientCreate Function
	Prototype
	Parameters
	Returned value

	The wip_SMTPClientCreateOpts Function
	Prototype
	Parameters
	Returned value

	The wip_getOpts Function
	The wip_close Function

	The Data Channel
	The wip_putFileOpts Function
	The wip_getOpts Function
	The wip_write Function
	The wip_close Function

	POP3 Client API
	Required Header File
	The Session / Connection Channel
	The wip_POP3ClientCreate Function
	Prototype
	Parameters
	Returned value

	wip_POP3ClientCreateOpts
	Prototype
	Parameters
	Returned Value

	The wip_getOpts Function
	The wip_listOpts Function
	Prototype
	Parameters
	Returned values

	The wip_read Function
	The wip_deleteFile Function
	The wip_close Function

	The Data Channel
	The wip_getFile Function
	The wip_getFileOpts Function
	The wip_read Function
	The wip_getOpts Function
	The wip_close Function

	Examples of Application
	Initializing a GPRS Bearer
	Simple TCP Client/Server
	Server
	Client

	Advanced TCP Example
	Simple FTP Example
	Advanced FTP Example
	Simple HTML Example
	Simple SMTP Example
	Simple POP3 Example

	Error Codes
	IP Communication Plug-In Initialization and Configuration er
	Bearer service error codes
	Channel error codes

