
e-SIM MMI Solution
Integration Guide
CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD.
The information contained in this document is confidential and is the sole and proprietary information of e-SIM Ltd.
It may not be used or reproduced, disseminated, published or otherwise disclosed without prior express written consent
of an authorized representative of e-SIM Ltd. No rights to the information herein are hereby conferred upon the recipient.

e-SIM MMI Solution 2.0
Integration Guide

© 2004 e-SIM Ltd. All rights reserved.

e-SIM Ltd.
POB 45002
Jerusalem 91450
Israel

Tel: 972-2-5870770
Fax: 972-2-5870773

Information in this manual is subject to change without notice and does not represent a commitment on the
part of the vendor. The software described in this manual is furnished under a license agreement and may be
used or copied only in accordance with the terms of that agreement. No part of this manual may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying
and recording, for any purpose without the express written permission of e-SIM Ltd.

Microsoft, Windows, Windows NT, and ActiveX are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Microsoft Excel is a product of
Microsoft Corporation.

T9 is a registered trademark of Tegic Communications, Inc.

Other product and company names mentioned in this manual may be trademarks or registered trademarks
of their respective owners.

Written and produced by e-SIM Ltd.
MMI_Plat_Int-2.0

Chapter 1: Overview .1

Requirements .1

Integration Overview .2

Chapter 2: State Machine Integration .3

Preparing the Callback Functions .3
Timer Request API .3
Dynamic Allocation API .3
User Error Callback Function .4
Debug API .4

Initializing the RapidPLUS State Machine .4

Executing State Machine Cycles .5

Chapter 3: Basic MMI Application Integration .7

Integrating the Platform Keypad with the MMI Application’s Keypad 7
Normal Pushbutton Presses .7
Long Presses and Repeating Presses .8

Integrating the Graphic Display with the Platform LCD .8
Using the MMI Application’s True Color Graphic Display Object 9
Using the Platform’s Graphic Services .9

When Using the RapidPLUS True Color Graphic Display Object 9
When Using an External Graphic Display .10

Chapter 4: Protocol Stack Integration .11

Integrating with an AT Command-Based Protocol Stack API .11

Integrating with a Function-Based Protocol Stack API .12
Generate First, Then Implement .12
Adapt First, Then Generate .12

Chapter 5: Basic Hardware Services Integration .13
Integrating the File System .13
Integrating the Platform Services .13
Integrating the Smart Editor Engine (T9) .13
Integrating the Camera .14
Integrating Graphic Codecs .14
Calculator Functionality .14

Contents
CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD. 1

INTEGRATION GUIDE
Interface to External Applications . 14
Conditional Code . 14
Additional Hardware Services Integration . 15
2 CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD.

The e-SIM MMI Reference Application (referred to as the “MMI Application”)
was developed to be easily integrated into any platform. This guide provides the
information that you, the embedded system integrator, need to integrate the MMI
Application into your product’s platform.

In order to adapt the MMI Application to your product’s platform, you must:

• Prepare your platform for the integration.

• Integrate the RapidPLUS state machine API.

• Integrate the basic MMI Application API (e.g., keypad and display).

• Integrate the MMI Application with the Protocol Stack.

• Integrate the MMI Application with the basic hardware services.

• Test the integrated application on the target.

Requirements
Before you begin the integration process, please ensure that you have the necessary
knowledge and software, and that you have prepared the MMI Application task.

Knowledge

RapidPLUS: You should be familiar with RapidPLUS code generation and the
embedded RapidPLUS APIs. For assistance, refer to the Generating Code for Embedded
Systems manual and the online MMI Component Reference Guide.

Platform: You should be familiar with your platform environment, including API, and
with compilation and debugging tools.

Software

• MMI Application in XML format.

• RapidPLUS CODE version that is appropriate for the MMI Application version.

• RapidPLUS embedded kernel and graphic libraries compiled for your platform (see
Appendix A for the Porting order).

Chapter 1: Overview

Note: We recommend that you take the RapidPLUS Basics, RapidPLUS Code
Generation, and e-SIM MMI Solution training courses before you begin.
CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD. 1

INTEGRATION GUIDE
• e-SIM Customization Tools (i.e., the Multimedia Resource Manager, Menu and Text
Generator, and Layout Editor) or their resulting data.

• Compilers, linkers, debugging tools, and other tools necessary for your platform.

Preparations

You must prepare a stand-alone task for the MMI Application. This task must have an
incoming queue for messages from other tasks. The MMI task must include an
initialization part and an infinite loop for message processing.

You must ensure that necessary information is sent from other tasks to the MMI task.

Integration Overview
The process of integrating the MMI Application into your platform can be divided into
four main stages. At each integration stage, you should test and debug your work.

The four stages are:

After integration, you should test the integrated application on the target using your
normal testing procedures.

STAGE DESCRIPTION

1. Integrate the
RapidPLUS state
machine API

You will (i) implement the Timer request API, Dynamic
Allocation API, Debug API, and user error callback
function; and (ii) call the RapidPLUS initialization
process.

2. Integrate the basic
MMI Application
API

You will (i) integrate the platform keypad with the
MMI Application’s keypad; and (ii) integrate the graphic
display object (GDO) with the platform LCD or replace
the RapidPLUS graphic services with those of the
platform.

3. Integrate the MMI
Application with the
Protocol Stack

You will integrate the MMI Application by using AT
commands or by modifying the MMI service layer to
fit your API.

4. Integrate the MMI
Application with the
basic hardware
services

You will integrate the MMI Application with services
such as battery, file system, tones, melodies, and
backlight.
2 CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD.

In order to integrate the RapidPLUS state machine API, you will need to prepare a set
of callback functions, and then provide these callback functions to RapidPLUS in the
initialization process.

Preparing the Callback Functions
For details about all of these functions, refer to “The Application Programming
Interface” chapter in the Generating Code for Embedded Systems manual.

Timer Request API
RapidPLUS relies on the embedded system to receive timer services; therefore, you
must implement two callback functions using the embedded system’s timers.

• usrTimerReqFunc
This function will be called by the RapidPLUS kernel each time a RapidPLUS
timer object/timer tick object is started. The embedded system must call
rpd_TimerExpired when the timer has elapsed.

• usr_TimerStopFunc
This function will be called by the RapidPLUS kernel when a timer object/timer tick
object is stopped before it has expired.

Dynamic Allocation API

The MMI Application dynamically allocates components in order to optimize RAM
memory consumption and the RapidPLUS kernel dynamically allocates internal data
structures; therefore, you must implement two callback functions using the embedded
system’s heap allocation mechanisms.

• usr_MallocFunc
This function allocates a block of memory and returns the pointer to the block.

• usr_FreeFunc
This function receives a pointer to a previously allocated block of memory annd
releases it.

Chapter 2: State Machine
Integration
CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD. 3

INTEGRATION GUIDE
User Error Callback Function

RapidPLUS checks error conditions (such as array and string overflow) and internal
errors that can be caused by memory corruption. RapidPLUS will call this callback
function any time RapidPLUS detects these error conditions. Therefore, you MUST
implement this callback function in such a way that you will receive a clear notification
each time an error occurs.

• usr_ErrorFunc
The parameters received by this function are the error type and error severity.

Debug API

This function is optional. If you register it, you will be able to follow the execution of
the MMI Application. We highly recommend using it in order to follow the transitions
among modes.

• usr_DebugFunc
This function has many options that can be activated; the most useful option is
fDBGTTransitionsDetail.

Initializing the RapidPLUS State Machine
In order to initialize the state machine and the MMI Application, you must call the
following API in the initialization part of the MMI task. Be sure to pass the
corresponding callback functions that were previously implemented.

���� To initialize the state machine:

1. Register the timer callback functions by calling:
rpd_setTimerRequest(usrTimerReqFunc, usr_TimerStopFunc, 0);

2. Initialize the dynamic allocation and the error callback functions by calling:
rpd_PrivInitMallocTask(usr_ErrorFunc, usr_MallocFunc, usr_FreeFunc);

3. Initialize the debug API by calling:
rpd_SetUserDebug(usr_DebugFunc,debugBuff,DEBUG_BUFF_SIZE,
fDBGTTransitions);

Be sure to statically allocate debugBuff as an array of integers with

DEBUG_BUFF_SIZE size. Refer to “Using the Debug API” in the Generating Code
of Embedded Systems manual.

4. Initialize the GDL and GDO. See “Integrating the Graphic Display with the
Platform LCD” on p. 8.

5. Call rpd_PrivStart();. This function will execute the first cycle of the state
machine, executing the entry activities for the root mode of all allocated user
objects (UDOs).

6. Call runRapidCycles(100);. This function will start the initialization proces
of the MMI Application. See “Executing State Machine Cycles” on p. 5.
4 CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD.

CHAPTER 2: STATE MACHINE INTEGRATION
Executing State Machine Cycles
The execution of the MMI Application requires that the RapidPLUS state machine
perform cycles. The basic mechanism includes feeding the state machine with
events or data (using the generated API) and processing the data by calling
rpd_PrivRunIdle. (Information about feeding the state machine is discussed in
the other integration chapters; here we are concerned with executing the state
machine cycles.)

In order to improve the performance of the state machine and the MMI Application,
you should implement the following mechanism:

void runRapidCycles(int maxCycles)
{

int rpd_moreToDo, i=0;
do{

rpd_moreToDo = rpd_PrivRunIdle();
}while(rpd_moreToDo && i++<MAXCYCLES);

if (rpd_moreToDo)
{

/* Normally most actions are dealt with within a few state machine
cycles. However the occasional situation arises when we have run the
maximum number of cycles but there is still more to do. In this case we
will return to the task message loop to see if there are any messages to
process. This is important because we do not want the task message
queue to overflow. If there aren't any genuine messages we want to
continue executing as soon as possible. In order to ensure this, we put
a special message in the queue. This message should be processed by
calling again this function.

*/
esim_send_msg(RPD_RUN_CYCLES, (U8)0, NULL);

}
}

1. MoreToDo value

The function rpd_PrivRunIdle returns a value composed of 3 possible flags
(described in the “Bit Values Table” in the section “The State Machine and the
‘More To Do’ Return Value” in the Generating Code for Embedded Systems
manual). If this return value is not equal to zero, the MMI Application is not yet
in a stable state and additional cycles must be executed. The number of
continuous cycles is limited by the constant MAXCYCLES. The recommended
MAXCYCLES value is 20.

2. Exceeding the MAXCYCLES value

In case the application requires more than MAXCYCLES cycles, a mechanism for
sending a message to the RapidPLUS task is implemented in order to prevent
the RapidPLUS task’s queue from overflowing.
CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD. 5

INTEGRATION GUIDE
6 CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD.

In order to integrate the MMI Application API, you will need to (i) integrate the
platform keypad with the MMI Application’s keypad; and (ii) integrate the graphic
display with the platform LCD.

Integrating the Platform Keypad with the MMI Application’s Keypad
The EMB_KPD component is the interface of the MMI Application to the real keypad.
To integrate the real keypad with EMB_KPD, the Keypad task must send a message to
the MMI task each time a pushbutton is pressed or released.

Normal Pushbutton Presses

After receiving notification from the Keypad task, the integration layer of the MMI
task must translate it into a RapidPLUS message of type KEY_INFO in the KEY_MSG
union in EMB_KPD’s interface. In order to perform this translation, the integration
layer must allocate a structure of type KEY_INFO (see emb_kpd.h) and assign the
fields according to the data received.

The following table presents the expected sequence of messages, type KEY_INFO, in a
press on the “2abc” key:

* The expected value for the virtual_key_id field is one of the items in KEY_VALUE_Cs in the
RPD_WINDOW interface.

To send the KEY_IFO message, use the following macro from mainapp.h:

R10597_EMB__KPD_send_KEY__MSG_KEY__INFO(embStructPtr,size)

Chapter 3: Basic MMI Application
Integration

press_state state virtual_key_id*

1. FIRST_PRESS PRESSED TWO (2)

2. INSIGNIFICANT RELEASED TWO (2)
CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD. 7

INTEGRATION GUIDE
Long Presses and Repeating Presses

The MMI Application expects the embedded system to analyze the timing of presses
and releases in order to supply information about long presses and repeating presses.
The MMI Application reacts differently to these types of presses.

The following table presents the expected sequence of messages, type KEY_INFO, in a
long press of the left soft key:

* The expected value for the virtual_key_id field is one of the items in KEY_VALUE_Cs in the
RPD_WINDOW interface.

Refer to the section “Sending a Structure form the Embedded System to RapidPLUS”
in the chapter “Interfacing with Generated User Objects” in the Generating Code for
Embedded Systems manual.

Integrating the Graphic Display with the Platform LCD
The MMI Application’s graphic display can be integrated with the platform’s LCD
in one of two ways: (i) using the MMI Application’s true color graphic display object;
or (ii) replacing the RapidPLUS graphic services with those of the platform. In some
cases you may want to use the true color graphic display object with external bitmaps
and/or fonts.

Using the RapidPLUS graphic services makes the integration of the MMI Application
with the platform simple and allows testing of the exact graphic behavior in the
simulation environment. In case you need to reuse specific parts of the embedded
graphic services (e.g., fonts or font engine), you can combine RapidPLUS graphic
services with the platform’s graphics.

In the MMI Application, the components that manage the graphic services are:

• EMB_BITMAPS contains all of the MMI Application’s bitmaps. The bitmaps are
automatically imported into this component by the Multimedia Resource Manager
tool. EMB_DISPLAY also contains the MMI Application’s fonts. The RapidPLUS
font objects are bitmap fonts based on fonts that are compatible with Microsoft®
Windows.

• EMB_DISPLAY contains the true color graphic display object (GDO). This
component links the application code to the display device.

press_state state virtual_key_id*

FIRST_PRESS PRESSED SK_LEFT (501)

LONG_PRESS PRESSED SK_LEFT (501)

REPEAT_PRESS PRESSED SK_LEFT (501)

REPEAT_PRESS PRESSED SK_LEFT (501)

... PRESSED SK_LEFT (501)

INSIGNIFICANT RELEASED SK_LEFT (501)
8 CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD.

CHAPTER 3: BASIC MMI APPLICATION INTEGRATION
• SRV_DISPLAY integrates all other graphic display services and is the front-end of
the graphic display services to the MMI Application.

Using the MMI Application’s True Color Graphic Display Object

The heart of the graphic services is the RapidPLUS true color graphic display object.
The embedded graphic display object (GDO) interacts with the graphic devices via the
RapidPLUS graphic display library (GDL). This libary is a stand-alone library of
functions that exists outside of the MMI task.

���� Integrate the GDO using the RapidPLUS GDL:

1. Generate SRV_DISPLAY, EMB_DISPLAY, and EMB_BITMAPS as full objects
(UDOs).

2. Implement the GDO initialization and the bitblt function (as described in the
chapter, “Integrating Graphic Displays” in the Generating Code for Embedded
Systems manual). Follow the example in App_Api.c, which is located in the
platform folder.

3. When linking, include the ugxxx.lib graphic library that you received from
e-SIM (see “Software” on p. 1).

Using the Platform’s Graphic Services

The MMI Application’s native graphic display services can be adapted or replaced
with the platform’s graphic services. When deciding on whether to adapt or replace
RapidPLUS graphic elements, you should consider font and bitmap issues.

When Using the RapidPLUS True Color Graphic Display Object

The information is this section applies if you will be adapting the graphic display
object to work with your own fonts and/or graphic display libary.

Fonts

If your fonts are Microsoft Windows compatible, then replace the currently used fonts
in the RapidPLUS font objects (defined in EMB_DISPLAY).

If your fonts are not Windows compatible, you must provide a solution for the
simulation environment. This solution can either use similar fonts available in
Windows or you should create a DLL with the fonts in their native formats. This DLL
must provide a bitmap in Windows format for each character. You will need to
integrate this DLL as a DLL object in EMB_DISPLAY.

Bitmaps

In the e-SIM MMI Solution, bitmaps are managed by the Multimedia Resource
Manager tool (MultimediaResourceManager.xls). They are automatically imported
into EMB_BITMAPS in the simulation environment, and are then generated in an
RapidPLUS-specific format suitable for the embedded graphic display library (GDL).

Note: Changing font sizes may require changing the UI definitions.
CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD. 9

INTEGRATION GUIDE
In case you use your own graphic display library, you can use the Multimedia
Resource Manager’s code generation capabilities, adapting its macro to your own
format. Refer to the Customization Tools Guide for details.

In case different bitmap formats need to be supported in the embedded libary (GDL),
you can enhance the format support in the format driver’s C files: fd_gen.c and
fd_gen.h.

When Using an External Graphic Display

The information is this section applies if you will be replacing the MMI Application’s
services with the platform’s graphic services, including fonts and bitmaps.

���� Integrate the graphic services using an external library:

1. Generate SRV_DISPLAY as a full object (UDO) and EMB_DISPLAY as an
interface-only object (UDI).

2. After code generation, implement (in C) the internal functionality of
EMB_DISPLAY (so that it fits its interface) using the external library (for
information about the object’s interface and functionality, refer to the MMI
Component Reference Guide).
10 CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD.

The MMI Application can be integrated with the protocol stack in two ways: (i) using
string-based AT commands; or (ii) using an abstract function-based service layer.

Integrating with an AT Command-Based Protocol Stack API
The interface in the component EMB_AT provides a set of basic functions for sending
and receiving string-based AT commands. For details about these functions, refer to
the MMI Component Reference Guide.

There may be some small differences between how protocol stacks implement the AT
command protocol, for example, different timing or sequencing. AT commands used
by the MMI Application follow the GSM 07.07 standard. In order to verify the match
between the MMI Application and your protocol stack, test each functionality (for
example, incoming call, outgoing call, etc.) tracing the sequence of the AT commands.

The MMI Application uses the following extensions to the GSM 07.07:

• %CPI- Call progress indication

• %NRG - network registration including limited service mode

• %CSQ- RSSI signal quality level indication

Chapter 4: Protocol Stack
Integration
CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD. 11

INTEGRATION GUIDE
IIntegrating with a Function-Based Protocol Stack API
In cases where the protocol stack API does not support AT commands, you can use the
following approaches:

• Generate the relevant low-level MMI Application service components as Interface
Only (UDIs) and then implement these interfaces using the protocol stack API.

• Adapt these service components for the protocol stack API and then generate them
as UDIs. Adapt the related high-level components accordingly.

Protocol stack integration can be achieved using either or both of these approaches.
You should examine the interface of each service component to determine which
approach is best for it.

Generate First, Then Implement

This way is recommended when the interfaces of the low-level service components are
similar to the API of the protocol stack.

1. Generate the relevant low-level services (SRV_TAPI, SRV_SMS_LOW, and
SM_PBOOK) as UDIs.

2. Implement these interfaces using the protocol stack API. For details about the
interfaces of these functions, refer to the MMI Component Reference Guide.

If you keep the interface of the UDIs “as is” you will be able to reuse the “simulation
only” components even though they are implemented using AT commands.

Adapt First, Then Generate

This way is recommended when the interfaces of the low-level service components do
not match the API of the protocol stack.

1. Adapt the relevant low-level services API (SRV_TAPI, SRV_SMS_LOW, and
SM_PBOOK) for the protocol stack API.

2. Adapt the related upper-layer components (services and HMI modules) for the
changes made to the low-level services API.

3. Generate the low-level services as UDIs.

With this approach, the protocol stack simulation—which is based on AT commands—
will need to be modified. The components involved in protocol stack simulation are
(i) the low-level services and SRV_AT; and (ii) EMB_AT and SIMUL_AT.

Note: Changing the UDI interface will require that you adapt the upper layers.
12 CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD.

You will need to integrate the MMI Application with services such as battery, file
system, tones, melodies, and backlight.

The components that handle the interface to hardware services are embedded interface
components. These components are usually generated as interface-only objects (UDI).

If the interfaces of UDIs do not match the interface of the platform, you can:

• Change the interfaces in the UDIs—making sure to modify other components that
use them—and then generate code. Be very careful changing the interface because
the code generator might not keep the user code (the signature of the functions
includes the parameters).

• Enhance the adaptation layer (that is, the manually written user code) to fit the
original interfaces of the UDI components.

This chapter briefly describes the relevant interface components. You should refer to
the MMI Component Reference Guide for details about each component’s interface. You
should also refer to example code in the Platform subfolder.

Integrating the File System

The MMI Application expects file system functionality in the platform. The interface is
located in EMB_FILEMNG. The interface is C-like. The simulation environment uses
an ActiveX object for this functionality (RpdSimFFS.ocx).

Integrating the Platform Services

The integration points for most of the services in the platform are located in
EMB_HSRV. Some of these services are provided to the MMI Application directly
by EMB_HSRV and others are abstracted by SRV_UTIL.

Integrating the Smart Editor Engine (T9)

Chinese support, multi-tap support, and smart editing support are implemented in
WMI_EDITOR and WDG_TEXTBOX using a T9® engine supplied by Tegic
Communications, Inc. This interface is presented by EMB_T9. In order to use the MMI

Chapter 5: Basic Hardware Services
Integration

Important: Be sure that you integrate ALL the interfaces. Lack of integration of some
of the services may prevent the system from starting.
CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD. 13

INTEGRATION GUIDE
Application with the T9 engine, you must obtain a license from Tegic. Additionally,
the files rpteal.c and rpteal.h contain integration code that must be used.

Integrating the Camera

The camera application is provided as a reference implementation based on a software
and hardware environment provided by TransChip, Inc. This interface is presented by
EMB_CAMERA. In the reference implementation, much functionality is implemented
in external code provided by TransChip. You may need to enhance the RapidPLUS
implementation to fit other camera environments.

Integrating Graphic Codecs

EMB_ALBUM provides interface for manipulating images. It expects software that
(i) expands compressed images to a format that allows drawing; and (ii) can resize
these images. The codecs are not provided by e-SIM.

Calculator Functionality

The calculator application (HMI_CALCULATOR) implements the basic functions
inside EMB_CALC using native C arithmetic functionality. You do not need to change
the implementation of EMB_CALC unless the functionality used is not supported by
your environment.

Interface to External Applications

Currently, integration with external applications is based on Start and Stop
functionality. HMI_EXT_APP is the representative of the external applications in the
main MMI. Each external application has its own interface component: EMB_JAVA,
EMB_MMS, and EMB_WAP. The interfaces of these components can be enhanced to
match the real requirements.

Conditional Code

Through EMB_CONFIG, you can control the inclusion/exclusion of components in the
embedded MMI Application. EMB_CONFIG has a constant set (HMI_Cs) that is used
in a condition to include or exclude a component. In the simulation environment, the
value of the constant set items is 1 (i.e., include).

If you want to exclude a component from the embedded MMI Application, set the
value to zero BEFORE compilation. The best way to do this is to keep a version of the
generated h file (emb_config.h) with the appropriate values and overwrite the
generated code before compilation by copying this file instead of the newly generated
one. You can have a batch file execute automatically after the code generation process
bu using a Run command set in the “Command to Run After Code Generation” option
in the Code Generation Preferences dialog box, General tab.
14 CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD.

CHAPTER 5: BASIC HARDWARE SERVICES INTEGRATION
Additional Hardware Services Integration

The following components are described elsewhere:

EMB_ANIM_DATA: refer to Chapter 3: “Multimedia Resource Manager” in the
Customization Tools Guide.

EMB_AT: see “Integrating with an AT Command-Based Protocol Stack API” on p. 11.

EMB_BITMAPS and EMB_DISPLAY: see “Integrating the Graphic Display with the
Platform LCD” on p. 8.

EMB_KPD: see “Integrating the Platform Keypad with the MMI Application’s
Keypad” on p. 7.

EMB_LM_DATA: refer to Chapter 5: “The Layout Editor” in the Customization Tools
Guide.

EMB_TEXTRES: refer to Chapter 4: “Menu and Text Generator” in the Customization
Tools Guide.
CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD. 15

INTEGRATION GUIDE
16 CONFIDENTIAL AND PROPRIETARY INFORMATION OF E-SIM LTD.

	e-SIM MMI Solution Integration Guide
	Contents
	Chapter 1: Overview 1
	Chapter 2: State Machine Integration 3
	Chapter 3: Basic MMI Application Integration 7
	Chapter 4: Protocol Stack Integration 11
	Chapter 5: Basic Hardware Services Integration 13

	Chapter 1: Overview
	Requirements
	Integration Overview

	Chapter 2: State Machine Integration
	Preparing the Callback Functions
	Timer Request API
	Dynamic Allocation API
	User Error Callback Function
	Debug API

	Initializing the RapidPLUS State Machine
	Executing State Machine Cycles

	Chapter 3: Basic MMI Application Integration
	Integrating the Platform Keypad with the MMI Application’s Keypad
	Normal Pushbutton Presses
	Long Presses and Repeating Presses

	Integrating the Graphic Display with the Platform LCD
	Using the MMI Application’s True Color Graphic Display Object
	Using the Platform’s Graphic Services
	When Using the RapidPLUS True Color Graphic Display Object
	When Using an External Graphic Display

	Chapter 4: Protocol Stack Integration
	Integrating with an AT Command-Based Protocol Stack API
	Integrating with a Function-Based Protocol Stack API
	Generate First, Then Implement
	Adapt First, Then Generate

	Chapter 5: Basic Hardware Services Integration
	Integrating the File System
	Integrating the Platform Services
	Integrating the Smart Editor Engine (T9)
	Integrating the Camera
	Integrating Graphic Codecs
	Calculator Functionality
	Interface to External Applications
	Conditional Code
	Additional Hardware Services Integration

