
Methodology Guide:

Building Applications
for Embedded Systems

Methodology Guide: Building Applications for Embedded Systems

© 2002 e-SIM Ltd. All rights reserved.

e-SIM Ltd.
POB 45002
Jerusalem
91450
Israel

Tel: 972-2-5870770
Fax: 972-2-5870773

Information in this manual is subject to change without notice and does not represent a commitment
on the part of the vendor. The software described in this manual is furnished under a license agreement
and may be used or copied only in accordance with the terms of that agreement. No part of this
manual may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose without the express written permission of e-
SIM Ltd.

Microsoft, Windows, Windows NT, and DOS are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. Microsoft Windows Excel is a
product of Microsoft Corporation.
Written and produced by e-SIM Ltd.
Printed in Israel.

MAN-MethGuide-7.01

iii
Contents

About the Methodology Guide . vii

Typographic Conventions Used in this Guide . viii

User Assistance from e-SIM . viii

C H A P T E R 1 : M E T H O D O L O G Y O V E R V I E W . 1

The Rapid Development Methodology .2

Stage 1: Requirements Specification .4

Stage 2: Architecture Design .5

Stage 3: Implementation .7

Stage 4: Integration and On-Going Optimization .8

Stage 5: Final Optimization .8

Stage 6: Acceptance Testing .8

C H A P T E R 2 : R E Q U I R E M E N T S S P E C I F I C A T I O N . 9

Ref_Design Requirements Specification. .10

MMI Feature Requirements .11

C H A P T E R 3 : A R C H I T E C T U R E D E S I G N . 17

Architecture Design Methodology .18

Code Generation Considerations .19

Types of Code Generation .19

Interface of User Objects .21

Implementing Interface in Generated Code .24

Code Generation Process .25

iv
Identifying Components . 26

Embedded Interface Components. 27

Service Components. 29

Continuous vs. On-Demand Services. 32

Application Modules . 37

Using Holders to Share Components . 38

Creating the Main Application . 40

Component Functionality . 40

Component Interface . 41

Interface with the Embedded System . 41

Interface Among Full User Objects . 44

Component Interface Examples . 47

Rapid and System Architecture . 51

Task Architecture. 51

Inter-Task Communication and Memory Allocation . 51

Rapid Task Priority . 52

Starvation of the System . 52

UI Required in Different Tasks . 52

Timer Integration . 53

Design Review . 54

C H A P T E R 4 : I M P L E M E N T A T I O N . 55

Setting implementation priorities . 56

Implementing Components . 57

Component Implementation Procedure . 57

Implementing Embedded Interface Components . 58

Implementing Services. 59

Implementing the Graphic Display Object. 59

Using Holders. 61

Implementation Tips . 62

Verification Test . 62

Code Generation Messages . 63

Modes vs. Conditions. 63

Managing Priorities. 64

Streamlining Processes . 66

v

Avoiding Processor-Intensive Logic .66

Blocking Operations and Loops .67

Objects .67

C H A P T E R 5 : O P T I M I Z A T I O N . 69

Memory Usage Diagnostic Tools .70

Rapid’s Object Data Report .70

The Rapid RAM Size Report Utility .71

The Linker’s Map File .73

Rapid’s Debugger and Logger Tools. .74

Optimizing RAM .76

Setting Code Generation Preferences to Reduce RAM .76

Excluding Non-Referenced Interface Elements. .78

Generating Rapid Data Objects as Primitives .78

Replacing Interface Messages by Data Containers .78

Sharing Data by Using Data Containers .79

Allocating Message Memory by Pointer .79

Using Dynamic Memory Allocation .80

Replacing Timers by Timer Tick Objects .80

Consolidating Same-Type Data Objects .80

Reducing the Number of Components. .80

Using Concurrent Mode Status in Conditions .81

Optimizing ROM .81

CRUNCHing the Code .81

Using Data Containers Instead of Messages .82

Using Logic Loops .82

Limiting Font Generation .83

Optimizing Performance .84

Modifying Logic .84

Clearing Holders when not Required .85

Decreasing the Number of State Machine Checks .86

Replacing Synchronous by Asynchronous Function Calls. .86

Decreasing Component Nesting. .86

Decreasing Event Chaining .86

Limiting the Number of Consecutive State Machine Cycles .86

vi
 Optimization Case Study . 88

Techniques Applied to Reduce RAM Size . 92

Techniques Applied to Reduce ROM Size . 93

Case Study Optimization Summary . 94

A P P E N D I X A : M E M O R Y C O N S U M P T I O N . 95

vii
ABOUT THE METHODOLOGY GUIDE

The Methodology Guide has been written for the team using RapidPLUS CODE
to develop large-scale Rapid applications for the purpose of C code
generation. Typically, this team comprises the following areas of expertise:

• User interface design, for defining the system’s man-machine interface
(MMI).

• System engineering, for designing the overall embedded system.

• Rapid application development, for implementing the Rapid simulation
application.

• System integration, or programming, for writing the interface code and
integrating the Rapid task into the target platform.

The size and make-up of the team will vary greatly from organization to
organization and from project to project. In all cases, however, the team
members need to share a common conceptual model of how a Rapid
application for code generation evolves from an idea, to a software module
seamlessly integrated on the target platform.

The Methodology Guide provides this conceptual model, along with
guidelines on how best to use Rapid to achieve the team objective. It
comprises the following chapters:

• Chapter 1: “Methodology Overview“: This chapter presents a top-down
look at our methodology for developing Rapid applications for code
generation projects. It is important that all team members understand
each stage of the application development cycle—who the main players
are, the purpose of each stage, and its expected output.

• Chapter 2: “Requirements Specification“: Geared primarily to the user
interface designer(s), this chapter provides a typical MMI requirements
specification, based on an example application used throughout the
Guide. Because we recommend that a Rapid prototype’s look and feel be
built as part of the requirements specification, the Rapid developer has an
interest in this chapter as well.

• Chapter 3: “Architecture Design“: This chapter presents the very critical
stage of designing the architecture of the Rapid MMI simulation
application.

• Chapter 4: “Implementation“: This chapter provides guidelines on
detailed application design, as well as practical tips for correct
implementation and testing of the full-featured Rapid application. The

viii
information in this chapter should be of great help to the Rapid developer
in building a high-performance, maintainable Rapid application.

• Chapter 5: “Optimization“: This chapter points out various optimization
techniques and includes a detailed optimization case study.

• Appendix A: “Memory Consumption”: This appendix is a table of RAM
and ROM consumption for various generated Rapid objects and logic
elements, as compiled for 32-bit ARM compiler. The system integrator and
the Rapid developer may find these figures useful when carrying out the
final application optimizations.

Typographic Conventions Used in this Guide

• Names of properties, functions, and events are italized. For example,
connect and blinkPeriod.

• Complete phrases of Rapid logic are presented in bold, sans serif text:

& Switch2.position3 is connected

User Assistance from e-SIM

If you have a valid support agreement with e-SIM, please do not hesitate to
contact us with your queries. For your convenience, use the Support Call form
accessed via the Product Support page of our Web site.

From the same Product Support page, all users are welcome to access and
participate in our discussion group.

1

C H A P T E R 1

Methodology
Overview
In any engineering project, the reward for adhering to a systematic
development methodology is a well-designed product that clearly meets the
original requirements and is easy to maintain. Developing a Rapid application
for code generation is no exception.

This book presents guidelines for Rapid application development that will
speed up development, produce an efficient application, and ensure successful
and smooth integration of the generated application into the target system.
As in any heuristic approach, the Rapid development methodology is a by-
product of experience. It provides a general structure for effectively using the
Rapid development tools. However, experience may vary from organization to
organization and even from product to product, so the methodology must be
adapted in each case accordingly.

This chapter presents an overview of our development methodology. In
subsequent chapters, we delve into the main development stages and provide
detailed methods for dealing with specific issues. Wherever relevant, the
issues of development time and resource consumption are given special
consideration.

M E T H O D O L O G Y O V E R V I E W

2

THE RAPID DEVELOPMENT METHODOLOGY

This book focuses on Rapid’s ability to provide an integrated environment for
accomplishing two equally important tasks:

• Building a full-function simulation of a system’s Man Machine Interface
(MMI).

• Generating from the simulation C code that can be integrated into the
target system.

The Rapid development methodology is comprised of six main stages. The
output of each stage constitutes the milestone for going on to the next one.
Within each stage, work on the various components proceeds simultaneously.
Moreover, because of Rapid’s modular approach, it is possible for work on
several stages of the project to proceed in parallel, thus producing significant
savings in development time.

S T A G E P A R T I C I P A N T S O U T P U T

Requirements
specification

• User interface
designer

• Marketing

• Rapid developer

Detailed list of MMI features and
requirements

Architecture
design

and

• System engineers

• Software and
hardware leaders
familiar with
Rapid

• Rapid developer

1. Component list including
Internal functionality
and
Interface elements
for each component

2. Component nesting hierarchy

Design review Approval for the component list and
nesting hierarchy

Implementation • Rapid developer A full-function simulation, tested in
the simulation environment

Integration and
ongoing
optimization

• Software leader

• Device driver
programmer

• Rapid developer

A generated application compiled and
linked with the Rapid micro-kernel
into a single task, tested for the target
environment

Final
optimization

Same as above A generated application optimized for
size and performance

T H E R A P I D D E V E L O P M E N T M E T H O D O L O G Y

3

The methodology stages are presented graphically in the following diagram,
and described in the rest of this chapter.

Acceptance
testing

• Test engineer A generated application, debugged
and optimized, that meets all system
requirements

S T A G E P A R T I C I P A N T S O U T P U T

INTEGRATION

AND

ONGOING OPTIMIZATION

REQUIREMENTS SPECIFICATION

FINAL OPTIMIZATION

ACCEPTANCE TESTING

ARCHITECTURE DESIGN

AND

DESIGN REVIEW

IMPLEMENTATION

Interface for all user objects (UDOs)

COMPONENT FUNCTIONALITY

Main Application

Embedded interface UDOs

Widget and service UDOs

Application module UDOs

M E T H O D O L O G Y O V E R V I E W

4

Stage 1: Requirements Specification

The purpose of this stage is to specify the system’s comprehensive MMI
requirements and behavior. This specification describes in detail the look and
feel of the product, that is, its display device(s), switches, keypad, menus,
symbols, audio cues, and so on. The primary participants are those
responsible for the user interface design, as well as the Rapid developer.

❖ NOTE: The specification is a non-technical description of the system. It does
not address how the system is to be implemented either in Rapid or on the
target platform.

You may also choose to build one or more initial Rapid applications that
focus solely on the system’s MMI behavior. Such applications provide initial
prototypes of the system’s MMI, and may help refine the definitions of its
requirements. One application may be used to determine font type and size,
another—for showing the system’s behavior when a number is dialed.

Feature implementation can be partial as long as the application captures the
overall behavior. For example, when implementing the menu in a cell phone,
it is important to convey its general structure and how the user navigates from
menu to submenu to menu option. It is not necessary, however, to implement
the actual menu options (such as an option for setting the ringing volume). At
this stage of the project, the purpose of such an application is to provide a first
model of the system. It is highly probable that this application will not be the
one used in the implementation stage.

You can either use RapidPLUS CODE or RapidPLUS Xpress to build the initial
application. RapidPLUS Xpress is a tool specifically designed to build product
prototypes and generate screen transition charts.

The MMI specification document and, if developed, the accompanying initial
application describe the features and behavior of the system’s MMI. Rapid’s
Document Manager tool can be used to produce the specification in the
format of an HTML document with the simulation embedded in it as an
executable file, accessible to free play.

No matter what their format, we recommend that the detailed MMI
requirements be reviewed and approved before you go on to the next stage.

T H E R A P I D D E V E L O P M E N T M E T H O D O L O G Y

5

Stage 2: Architecture Design

The purpose of this stage is to translate the MMI requirements of the first
stage into a Rapid application architecture taking into consideration the target
hardware and operating system constraints. The output (either on paper or via
a suitable charting tool) is a list of all the application components and a
description of their nesting hierarchy. Architecture design involves the
following four steps:

1. Identifying project components.

2. Classifying project components.

3. Defining component interface and functionality.

4. Reviewing the design.

Throughout this stage, you should bear in mind testing and debugging needs
of the Rapid application. For example, although not specified in any
requirements document, it might be useful to include a text display in a
network simulator—to show an outgoing telephone number sent to the
component by the parent application.

1. Identifying project components

Project components vary in complexity and scope and may be approached
from different vantage points. For example, call management, menu, and
keypad are all components in a cell phone project. The call management and
menu components identify functionalities of variable complexity while the
keypad identifies a hardware component.

At this point of the process, you should list all the project components you
can identify without attempting to order them in any way. This step is often
performed in a brainstorming session.

2. Classifying project components

After identifying all the project components, you need to organize them into
a meaningful hierarchy.

Rapid architecture is modular and hierarchical with user objects (*.udo) as its
building blocks. User objects are Rapid applications that are used as discrete
objects within other Rapid applications. One user object can be nested within
another so that a user object may have several nested layers. A project
component can consist of one or several user objects with variable nesting in
each one.

M E T H O D O L O G Y O V E R V I E W

6

We have found it useful to distinguish three types of application components:

• Application modules

• Services: continuous and on-demand

• Embedded interface

Application modules capture the main functionalities of the MMI and
constitute the project’s top-level components. In a cell phone project, the
application modules may consist of call management, phone book
management, and games.

Continuous and on-demand services (also known as widgets) constitute the
middle level of the project. They capture two types of repetitive, self-
contained behaviors. Continuous services are ongoing behaviors, such as the
measurement of time by a clock. On-demand services are patterns of behavior
that are activated when required and deactivated as soon as they are no longer
needed, such as a text editor.

You will probably find that some services are nested in more than one
application module. For example, an editor service may be common to phone
book, Short Message Service, and perhaps games.

❖ NOTE: The distinction between continuous and on-demand services is important
only during the implementation phase and can be postponed until that stage.

Embedded interface are the lowest-level components of the project. They
commonly represent the hardware parts through which the end user
communicates with the system. Typical embedded interface components are a
keypad, a display, buttons, and switches. However, software such as a protocol
stack or an Internet browser can also be embedded interface components.

3. Defining component functionality and interface

The next step is to clearly describe the functionality to be encapsulated within
each user object, as well as the general nature of its interface to the parent
application. For example, the keypad component functionality and interface
must accurately reflect the actual hardware device’s functionality within the
embedded system. The architecture design should also include logic sequence
charts that faithfully capture actual embedded system scenarios.

❖ NOTE: At the architecture design stage, it is possible that not all details of the
embedded system drivers and external software modules are known or finalized.
However, whatever is known about the embedded system on the target platform
is important input into the design.

T H E R A P I D D E V E L O P M E N T M E T H O D O L O G Y

7

You also need to describe the parent application’s functionality, which can be
summarized as managing the startup process and high-level responsibility for
starting and stopping the different application modules.

4. Reviewing the design

Before going on to the implementation stage the application architecture
should be verified and approved. The design should be presented to a forum
that consists of all the people involved in the project who may have relevant
input. The various components and the rationale for each one should be
explained.

The purpose of the review is to make sure that the architecture complies with
both the MMI and the embedded requirements and that all involved in the
project share the same understanding of it. The design review should
therefore be attended not only by the embedded and Rapid team leaders but
by the individual team members as well. This step is important for
establishing a common understanding of the project among all its
participants. The review results in approved design documents and possibly a
list of open issues.

Stage 3: Implementation

The purpose of this stage is to implement the Rapid application down to the
last detail to produce a fully functional simulation that complies with all the
previously defined requirements and that is tested in the simulation
environment.

As application elements are finalized and implemented, they are integrated
into the embedded system environment and tested. In order to enable
integration to start as soon as possible, implementation of the components’
interfaces should precede implementation of their internal functionality, and
implementation of lower-level components should precede that of higher-
level ones. Problems discovered in running the application on the target
platform are solved by modifying the implementation and then retesting (in
both the simulation and embedded system environments).

As during the design review phase, the Rapid developer leads the way, with
input from the system engineer(s) as required.

M E T H O D O L O G Y O V E R V I E W

8

Stage 4: Integration and On-Going Optimization

The purpose of this stage is to write the code that integrates the generated
Rapid application with the rest of the embedded system. The output is a
generated Rapid application, compiled and linked with the Rapid micro-
kernel and tested for the target platform. The main player in this stage is the
system programmer, with considerable input from the system engineer and
Rapid developer.

Integration takes place in two stages: the code required to activate the Rapid
task from the target’s operating system is written first, then the code that
enables input and output flow between the Rapid task and other tasks and/or
devices. The second stage of integration evolves in parallel with the
application implementation. Each component that is integrated is also
checked for both response time and memory consumption. Thus, a tight
feedback loop of implementation → → → → integration →→→→ unit testing on the target
platform →→→→ implementation modifications, is established.

❖ NOTE: Under certain circumstances, it may be legitimate to start integrating
the Rapid application on a platform other than the final target platform—in
Microsoft® Windows or MS-DOS®, for example.

Stage 5: Final Optimization

The purpose of this stage is to analyze and optimize the performance and
memory use of the Rapid task within the target system. The final optimization
complements the on-going optimization of individual components, which
takes place during the integration stage, by checking how the Rapid task
interacts with the embedded system. Other tasks running in the embedded
system may produce a need for optimizations in the Rapid task that are not
needed when the Rapid task is run by itself.

Stage 6: Acceptance Testing

The purpose of this stage is to release a debugged, generated application that
meets all system requirements. The final system testing is based on the same
test scenarios used on the simulation application in the simulation
environment. The chief participant in this stage is the test engineer.

9

C H A P T E R 2

Requirements
Specification
The first stage of the Rapid development methodology is to specify the
system’s man-machine interface (MMI) requirements and behavior.

Typically, the requirements specification is a document produced by the
person responsible for the system’s user interface design, with input from a
Rapid developer and the Marketing department. It is not a technical
description of how the system will be implemented in Rapid nor on the target
platform.

In addition to the document, you can build one or more Rapid simulations to
help define and demonstrate the system’s MMI requirements and behavior.
Once you have built a simulation, you can use Rapid’s Document Manager
tool to produce a document in .html format with the Rapid simulation
embedded in it as executable content.

When you use a Rapid simulation to present the system’s MMI, it is important
to remember that its purpose is to capture the system’s look and feel. The
initial simulation should not implement all of the system’s features down to
the final details. For example, if the application is a cell phone that includes a
phone book, it is not necessary to implement the ability to store, sort, and
retrieve a hundred names and numbers. The prototype should be restricted to
the minimal functionality required to demonstrate how the user makes and
retrieves a phone book entry.

No matter what format you choose for the requirements specification, it must
be reviewed and approved before you go on to the next stage.

R E Q U I R E M E N T S S P E C I F I C A T I O N

10
This chapter describes the MMI requirements and behavior of a system that is
used as an example throughout the book. The system is a cell phone named
Ref_Design. The Ref_Design application can be obtained from e-SIM.

The purpose of the example is to lead you through the stages of proper Rapid
development, not to actually have you build a cell phone based on the
requirements specification.

REF_DESIGN REQUIREMENTS SPECIFICATION

Ref_Design is an imaginary cell phone whose MMI is modeled after most cell
phones currently on the market. Its MMI features comprise:

• Call management (for incoming and outgoing calls)

• Phone book management

• Menus (for user settings and functions)

• Editing numbers and names

• Language support (two languages: English and French)

• Animation capabilities

• Icon management

• A color graphic display

• A keypad that consists of six function keys (two of which are soft keys) and
twelve alphanumeric keys

• A backlight

The requirements are described briefly in this chapter. They are not as detailed
as an actual requirements specification document would be.

The following section contains illustrations of the cell-phone’s GUI elements.
The illustrations were produced by bringing the Ref_Design application into
the Document Manager tool and generating a User Specification document.

R E F _ D E S I G N R E Q U I R E M E N T S S P E C I F I C A T I O N

11
MMI Feature Requirements

Call management

Outgoing calls: the user can dial up to 32 numbers for each call.

Incoming calls: the cell phone can answer incoming calls.

Calls are sent and answered using the Send key. Calls are terminated using the
End key.

Phone book management

The phone book can contain up to 100 entries. Each entry is presented on its
own page and consists of a name (limit 20 characters) and a phone number
(limit 20 characters). The phone book is available when the phone is in idle
state. There are two ways to open the phone book and each way presents
different information.

Scrolling through phone book entries

Entries in the phone book are presented alphabetically. Pressing the scroll
keys opens the phone book to either the first or last entry. Repeated pressing
on the scroll keys scrolls through the entries.

Using the phone book menu

Pressing a soft key (Names) opens the phone book menu. (This menu is not
accessed from the Main menu.) Through the phone book menu, the user can
add, modify, delete, and view entries.

Menus for user settings and functions

The cell phone’s menus have several levels. The top level is animated and
presents the following options: Messages, Settings, Call log, Profiles, System,
Games, and Keyguard. Pressing a soft key (Menu) presents the first option,
Messages. Pressing the scroll keys cycles through the other options.

See p. 13 for an illustration of the top-level Messages option.

Soft key that opens the
phone book menu

Soft key that accesses
the top-level menu

Scroll keys that open the phone book
and scroll through the entries

R E Q U I R E M E N T S S P E C I F I C A T I O N

12
Each of the top-level options has a submenu. The submenu is accessed by
pressing a soft key (Select). Navigation in a submenu is controlled by the scroll
keys. As the user scrolls through a submenu, the option that is in focus is
highlighted. The vertical bar on the right indicates the option’s position in
the submenu:

Editing numbers and names

The way in which numbers and names are edited depends upon whether the
cell phone is in dialing mode or text entry mode.

Dialing mode

Digits are entered on the right side of the screen. Each additional digit pushes
the other digits to the left. In dialing mode, only digits and the # and * can be
entered.

Text entry mode

Characters (including digits) are entered from left to right. The cursor is
always positioned to the right of the last character entered. Each word is
automatically capitalized.

Repeating a keypress

In both modes, pressing-and-holding a key for more than 1 second repeats the
keypress.

Clearing the display

A short press on the Clear soft key clears the last character; a long press clears
the entire string.

Sample menu list

Sample entry of numbers in dialing mode

R E F _ D E S I G N R E Q U I R E M E N T S S P E C I F I C A T I O N

13
Language support

Two languages are supported: English and French. All text is in English and
French; however editing is only supported for English. (If this specification
were for a real cell phone, editing in French would also be supported.)

Animation capabilities

Animation on the screen is used for the company logo, for the top-level menu
options, and for the powering off message. Suggested animations are shown
below:

Company logo

The company logo enters from both sides of the screen and merges in the
center.

Top-level menu

All of the seven top-level menu options are animated. Below is a sample
animation for the Messages menu.

Powering off

As the cell phone is powered off, the turning hourglass adds interest.

R E Q U I R E M E N T S S P E C I F I C A T I O N

14
Icon Management

Icons are bitmaps used to provide information about signal strength, battery
status, text and voice messages, and roaming. The icons look similar to:

The icons are:

Display

The display is a 110 × 86 pixel, 16-color graphic display.

I C O N D E S C R I P T I O N

Signal strength
indicator

This icon appears when the main screen appears. It has
five levels, 0−4 bars.

Text message
notification

This icon appears when a text message has been left on
the cell phone.

Voice message
notification

This icon appears when a voice message has been left on
the cell phone.

Roaming
indicator

This icon appears when the cell phone is in Roaming
mode (set by the Protocol stack).

Battery
indicator

This icon appears when the main screen appears. It has
four levels plus charging status.

Signal strength indicator Battery indicator

Text message notification

Voice message notification

Roaming indicator

R E F _ D E S I G N R E Q U I R E M E N T S S P E C I F I C A T I O N

15
Alphanumeric Keys

There are ten alphanumeric keys and two character keys similar to:

Function Keys

The six function keys are:

K E Y D E S C R I P T I O N

End
Power On/Off

The End function is activated by a short press on the key.
It terminates phone calls.

The Power On/Off function is activated by a long, two-
second press on the key. The cell phone responds by
turning on the backlight, displaying the application’s
name and the manufacturer’s animated logo, and going
into idle state.

Ref_Design also verifies reception and battery status. If
reception is poor or the battery too low, Ref_Design
displays an appropriate message. When pressed off,
Ref_Design turns the backlight off and all operations are
terminated.

Send The Send key is activated by a short press on the key.

It controls call initialization for outgoing and incoming
calls.

Two soft keys Each soft key is activated by a short press on the key.

The functions associated with these keys vary from one
display to another and are shown at the bottom left and
right corners of the display.

Two arrow keys Up and down arrows are used for scrolling through lists.

R E Q U I R E M E N T S S P E C I F I C A T I O N

16
The function keys should look similar to:

Backlight

While the cell phone is turned on, the backlight will automatically go off if no
key has been pressed for a period of 10 seconds in order to conserve the
battery. The backlight will go on again as soon as any key is pressed.

The six function keys

17
C H A P T E R 3

Architecture Design
The second stage of the Rapid design methodology is to translate the man-
machine interface (MMI) requirements specified in the first stage into a Rapid
application architecture.

The result is a high-level design that identifies:

• The Rapid project components: the main application and its user objects.

• Each user object’s functionality, which implements one or more MMI
requirements.

• Each user object’s interface, that is, its connection to its parent object and,
where known, the specific interface details.

• Code generation considerations, including each user object’s generated
type.

• Means of testing in the Rapid simulation the inputs and outputs of
interface-only user objects.

• The fundamental functionality of the parent application itself.

The design output, such as a block diagram, can be produced by an outside
diagrammming tool. Optionally, you can build the basic components in
RapidPLUS CODE , and then generate reports, such as the User Object
Interface report and Component Dependencies Tree report, which show the
project’s hierarchical structure.

A R C H I T E C T U R E D E S I G N

18
ARCHITECTURE DESIGN METHODOLOGY

The architecture design revolves around the project components: identifying
them, defining their functionality, and specifying their interface.

Start the architecture design by listing all system components as derived from
the requirements specification. On the basis of the requirements specification,
you will probably be able to identify the input/output components (the actual
devices through which the user and the system interact) and the main
functionality components of the MMI task. However, a Rapid application
includes other components that cannot be identified by looking at the
requirements specification alone.

The requirements specification is not written from the Rapid point of view
and must be analyzed and reworked to fit the Rapid approach. Identifying the
components of a Rapid application involves a variety of considerations
beyond the requirements specification. These considerations are influenced
by the embedded system architecture, by the Rapid process of code
generation, by the Rapid method of creating components, and by the ways in
which components interact.

Before identifying the components, you should familiarize yourself with the
code generation considerations discussed in the next section.

C O D E G E N E R A T I O N C O N S I D E R A T I O N S

19
CODE GENERATION CONSIDERATIONS

The Rapid development tools produce a fully-functioning simulation of an
embedded system’s MMI. This simulation runs in the Windows environment
only. The Rapid Code Generator transforms this simulation into an executable
Rapid application that runs on a real embedded system.

The Rapid simulation includes representations of actual objects such as
keypads, switches, and protocol stacks as well as logic that controls their
behavior. When code is generated, these objects and their logic become
redundant since they already exist in the embedded system. The only thing
required of these objects is an ability to communicate with the embedded
system on the one hand and the Rapid task on the other.

We therefore want the Code Generator to process the interface, but to ignore
the internal logic. The Code Generator has such a processing option, but it
can be applied only to a stand-alone component; the Code Generator cannot
apply different processing types to sections of logic within the same file.
Whenever such specialized generation is required, a separate component
known as a user object must be created.

A user object is a Rapid application that has been built with an interface that
enables it to be used as an encapsulated object inside other Rapid
applications. When user objects undergo code generation, code can be
generated only for their interface so they can form the link between the
embedded system and the Rapid application.

Types of Code Generation

Rapid provides four types of code generation for each user object:

• Full object

• Interface only

• Data container

• Empty task

User objects generated as full objects (*.udo)

By default, user objects are generated in their entirety, as actual objects. This
means that code is generated for their nongraphic objects, internal logic, and
interface to the parent application. This method of code generation applies to
user objects that were created in order to split the application into smaller,
easier-to-manage components.

A R C H I T E C T U R E D E S I G N

20
User objects generated as interface only

Various components that are used during the development phase to simulate
the embedded side of the project are not needed in the generated code; for
example, simulated input and output devices (such as buttons and displays),
communication protocols, low-level and other software modules, drivers—all
already exist on the target platform.

These objects are incorporated in user objects that are defined for code
generation as “interface only.” This method of generation ensures that code is
generated only for the user object’s interface, which is generated as an API.
Neither the objects nor the internal logic of the user object are generated.

When the user object is integrated into the embedded system, the place of its
non-generated objects and internal logic is filled by the corresponding
embedded system module.

User objects generated as data containers

This method of generation is a specialized extension of “interface only”
generation. It applies only to user objects with a message interface, where the
message is used solely for storing data that can be shared by different
components. Since the message serves only as a data container, its built-in,
send/receive mechanism is redundant and not generated.

For more information, read the section “Using Messages as Data Containers”
in Chapter 16: “User Objects with Messages” of the User Manual Supplement.

User objects generated as empty tasks

Generated Rapid code runs in a single task. When the Rapid application
includes a graphic display object, it is an integral part of the Rapid task.
However, constraints of the embedded system may require a separate task for
the graphic operations. The Code Generator is capable of splitting the graphic

C O D E G E N E R A T I O N C O N S I D E R A T I O N S

21
display from the main Rapid task, but can do so only when the graphic
display object is in a separate user object.

Whenever the embedded system requires a separate task for graphic
operations, the graphic display must be handled by a discrete user object. This
user object must be flagged as an empty task for code generation.

For more information, read Chapter 7: “Splitting the Rapid and Graphic
Tasks” in the Generating Code manual.

Interface of User Objects

The previous section showed how the code generation options offered by
Rapid impact the architecture of the application. A Rapid application destined
for code generation will usually combine several user objects. These user
objects must be given means to communicate with their parent application
(i.e., the application that contains the user object). Rapid provides various
elements you can add to a user object to enable it to interact with its parent
application. These elements make up the user object’s interface, and they
consist of:

• Exported properties

• Exported events

• Messages

• Exported functions

User object selected for generation as a separate task

A R C H I T E C T U R E D E S I G N

22
Exported properties, exported events, and messages are created in the User
Object Properties dialog box. Functions are created in the Function Editor and
are also visible in the User Object Properties dialog box.

Exported properties

When a property is added to a user object, it is listed in the Logic Palette
among the user object’s properties, and its value can be read or assigned by
the user object’s parent application. Exported properties thus enable
bidirectional communication between the user object and its parent
application; the user object can pass data to the parent application and vice
versa.

Properties can be of the following types: string, integer, number, and constant
set. In the Rapid simulation you can also use point properties. However, this
property type is not supported for code generation.

Exported events

Like other objects, user objects can generate events. These events can be used
in the logic of the user object’s parent application. An exported event enables
communication from the user object to the parent application. The user

C O D E G E N E R A T I O N C O N S I D E R A T I O N S

23
object notifies the parent application that the event has occurred, and the
parent application can then respond to this information.

For an event to occur, it must be triggered within the user object. You should
therefore ensure that each exported event is triggered somewhere in the user
object’s logic.

Exported events are listed in the Logic Palette in the Property column.

Messages

A message is data that is transferred between objects in a defined format. It
enables bidirectional communication between a user object and its parent
application. A message is made up of structures whose basic members, or
fields, are: string, integer, number, and array. Once a structure has been
defined, it can be incorporated as a nested member in another structure,
thereby creating a multilevel structure. Messages can be used to send complex
data from the user object to the parent application and vice versa.

Messages are listed in the Logic Palette in the Property column.

Exported functions

A user function is a block of Rapid logic that can be invoked as a single
function within an activity, action, or condition. Exported functions enable
communication from the parent application to the user object. When a
function of a user object is exported, it is listed among the user object’s
functions in the Logic Palette and is available to the user object’s parent
application. The parent application can use exported functions to directly
influence the behavior of objects within the user object.

A user function can have one or more arguments. Defining all, or some, of a
user function’s objects as arguments gives the function greater flexibility. The
following objects can be used as arguments in functions:

• Strings

• Integers

• Numbers

• Arrays

• User objects

• Graphic displays and fonts

A R C H I T E C T U R E D E S I G N

24
Implementing Interface in Generated Code

The properties, events, messages, and functions that make up the interface of
user objects are generated as macros and empty functions. These can easily be
used to integrate with the embedded operating system and other embedded
software. The embedded system programmer implements the interface layer
by filling in the empty generated functions and calling the generated macros.

The interface layer ensures that:

• Output from the Rapid task is in the format that the embedded system can
process.

• Input to the Rapid task is translated into a format that Rapid can process.

For example, the output from the Rapid task may be through functions of
user objects generated as interfaces only. Rapid generates exported functions
as empty functions. In the user object’s generated source code file, the
embedded system programmer writes C code that implements these functions
in terms that are meaningful to the embedded system.

The interface layer also manages system input into the Rapid task. This part of
the interface may be written in any file or files, as long as they are compiled
together with the generated source code files. Rapid provides an API whose
functions can be called from the interface layer.

/******************************/
/***** Exported functions *****/
/******************************/
void LAMP_R11555_lampOn (LAMP* udo)

{
/******** RapidUserCode BEGIN LAMP_R11555_lampOn ********/

gotoxy(5,22);
printf("Lamp is ON ");

/******** RapidUserCode END LAMP_R11555_lampOn ********/

User code in exported function of user object generated as "interface only"

C O D E G E N E R A T I O N C O N S I D E R A T I O N S

25
Code Generation Process

The code generation process can be summarized as follows:

1. The Code Generator translates the Rapid application and each of its user
objects into C source code files.

2. The embedded system programmer writes a thin interface layer, ensuring
that the functions of user objects generated as interface only are
implemented in terms meaningful to the embedded system, and system
messages are translated into the data structures understood by Rapid. Calls
to Rapid-supplied functions and macros initiate and start the Rapid task,
pass system messages, and update the Rapid timer objects.

3. Using the embedded system’s compiler and linker, the generated source
code files and the interface code are compiled and then linked with the
precompiled microkernel supplied by e-SIM. The result is an executable
Rapid application, or Rapid task, which is in turn linked with the rest of
the embedded system software to create an executable image for
downloading to the target platform.

int processKeyDown(int pressedKey)
{

switch(pressedKey)
{

case KEY_1:
R3668_KEYPAD_set_keyCode(1);
R2335_KEYPAD_pressed();
break;

case KEY_2:
R3668_KEYPAD_set_keyCode(2);
R2335_KEYPAD_pressed();
break;

default:
return 0;

}
}

User API code calling generated macros following a key press

A R C H I T E C T U R E D E S I G N

26
IDENTIFYING COMPONENTS

Rapid applications have a modular, hierarchical structure. Their components
are user objects: Rapid applications that can be used as encapsulated units
within other Rapid applications. Each component implements its own
particular functionality, with upper-level components incorporating lower-
level ones.

When you create the component list for a Rapid application, aim to achieve:

• Easy future maintenance and support. Creating a functionality as a
separate user object insulates the rest of the application from the effect of
future changes in the user object.

• Efficient resource usage and performance.

• Easy and fast development.

There is a trade-off between ease of development and maintenance on the one
hand and economical resource usage and high performance on the other. It is
a common mistake during the design stage to impose on Rapid a C-oriented
approach, which sees components in terms of source files and builds a user
object for each cluster of functions: power up, power down, incoming call,
outgoing call, etc. On the other extreme, it is possible to build any Rapid
application from one main application and a single embedded interface user
object. Such an approach may be applied to applications with a small amount
of functionality and very tight memory limitations, but will make it hard to
use group development and maintain large applications.

The Rapid approach is more discriminating. Some function clusters may be
handled within a single, more inclusive component, for example, incoming
and outgoing calls may both be handled within the call management
component. Other function clusters, such as power on and power off, which
occur only once throughout the application, may be implemented within the
main application. The key considerations in these decisions are the price—in
resource and performance—of a user object versus the size and complexity of
the functionality to be implemented.

The components that make up Rapid applications fall into three categories:

• Application modules

• Services: continuous and on-demand

• Embedded interface components

The relationship among the three component types is hierarchical. The
application modules constitute the top level of the hierarchy while the
embedded interface components constitute its bottom level.

I D E N T I F Y I N G C O M P O N E N T S

27
Top-level and bottom-level components are basically givens. Top-level
components reflect the main functionalities of the MMI task. Bottom-level
components are dictated by the embedded system. Each bottom-level
component represents an input or output device (hardware or software) that
exists in the embedded system. The creation of mid-level components is
motivated by project management considerations such as software reusability,
maintenance, and group development, or preferences for streamlining and
encapsulation.

The following sections discuss each of the component categories and provide
examples from the Ref_Design application. The section on services provides
various criteria for creating service user objects and establishes a distinction
between two types of service user objects.

How many components to use?

The many advantages offered by user objects do not come without a price tag.
In the generated code, each user object that is added to the project, regardless
of its content, carries a ROM overhead of 0.4KB. In a project with limited
memory resources, in spite of the many advantages of user objects, you must
strike a careful balance between the number of user objects and the available
memory. When the logic is small and used in a single component, it may be
preferable to use a concurrent mode or an internal function instead of a
separate user object.

Embedded Interface Components

Any part of the embedded system, hardware or software, that communicates
with the MMI task through input or output must be represented by an
embedded interface user object. Common examples of embedded interface
components are a keypad user object, which represents the embedded
system’s keypad, and a protocol stack user object, which represents the
embedded system’s communication with the network.

Because embedded interface user objects represent components that are part
of the embedded system, the internal logic of these user objects is irrelevant
for code generation. They must however communicate with the embedded
system in the manner that fits its communication abilities. This
communication is defined in the user object’s interface, which is the only part
of its logic for which code will be generated.

TIP: Embedded interface user objects must be generated as “interface only”.

A R C H I T E C T U R E D E S I G N

28
In designing the embedded interface components, we aim to achieve an easy
mapping from the existing external C code to Rapid. For example, if the
existing C code is based on structures, it makes sense to define messages as the
component’s interface. The main considerations for selecting the interface
type are: minimizing the amount of required integration work, reducing
memory consumption, and simplifying future changes and maintenance.

Embedded interface components are the lowest level of the Rapid component
hierarchy, and so do not contain other components.

Example

In designing the embedded interface keypad user object in the Ref_Design
application, we first examined what kind of input is available from the keypad
driver. We found that this input is very basic; when a key is pressed, there is a
system message or callback function that provides information about the
event (key in, key out) and the key code. The easiest way to map this input to
Rapid is through two events—key in and key out—and an integer property
that contains the code of the pressed key.

The Ref_design application contains the following embedded interface user
objects:

• EABDATA.UDO represents the memory area where the phone book
information (names and phone numbers) is stored. Communication
between the parent application and the embedded component is
bidirectional. The embedded component provides its parent application
with the current content of the phone book memory and updates the
content when it has been changed in the parent application.

• EMB_BATT.UDO represents the phone’s battery. It powers off the phone
when the battery power level is below five percent. It also communicates
to its parent application information that affects the display of the battery
icon and popup messages.

• EMB_BKLT.UDO represents the phone’s backlight. The parent application
notifies the embedded system when to turn the backlight on and off.

• EMB_NET.UDO represents the system’s connection with the
communications network. Communication between its parent application
and this embedded component is bidirectional. The component informs
its parent application about incoming calls and new messages. It also
communicates to the Rapid application information that affects the
display of the RSSI level icon and the roaming icon. The parent application
notifies the user object about outgoing calls so it can establish the
connection with the communications network.

I D E N T I F Y I N G C O M P O N E N T S

29
• EMB_KPD.UDO represents the phone’s keypad. It informs its parent
application of key manipulations.

• TEXTRES.UDO represents the memory area where all the texts used in the
cell phone’s interface (e.g., menu options, soft key labels) in both English
and French are stored. The component provides Rapid with the content of
the required text literals.

Service Components

Services (also known as widgets) are components that provide specialized
functionality to higher-level components. They implement behaviors that can
be more efficiently handled as separate components either because they are
common to several application modules, or because they create a flexible
buffer between embedded interface components and application modules.

Service components simplify system building and maintenance. They can
contain embedded interface components and/or other service components.
Their creation is in many cases optional and is motivated by the interplay of
optimization and design considerations.

Service components are divided into two types: continuous services and on-
demand services. See pp. 32–36 for information about both types of service
components.

Reasons for creating service components

The following sections present reasons for creating service components.

Breaking down application modules

Breaking down application modules into smaller components makes them
easier to conceptualize and implement. The more complex the application,
the greater the need for breaking it down into smaller units. A smaller unit
will consist of a self-contained behavior that governs a certain aspect of
functionality.

Example

In the Ref_Design application, there are services to handle the animations
accompanying the main menu options, the display of text labels, editing,
popup messages, and so on. In each of these examples, the service user object
replaces a block of logic in the application module.

The following illustration shows the components contained in the menu
management application module. Of these components, ANIMATOR—the
component responsible for displaying the animations of the main menu

A R C H I T E C T U R E D E S I G N

30
options—exemplifies a component created in order to break down a larger
component into smaller ones.

❖ NOTE: Although service_GDO is an integral Rapid object and not a user object,
it is included in the design scheme because it serves as the main output object for
the system.

Reusability

Often, a behavior is repeated in various application modules. For example, in
a cell phone application, editing is required when dialing a number, when
making an entry in the phone book, and when personalizing the welcome
message. We may also know that when a games module is implemented, it
too will require editing services.

The editing behavior in all these situations is essentially the same. It makes
more sense to create an editor user object that can be activated whenever
editing services are needed rather than include editing logic in each of the
upper-level components. Reusability of objects and their logic within or across
projects is a strong argument for creating them as separate components.

Example

Services can also be used as building blocks for other services. The following
illustration shows that in the Ref_Design application, there is an editor service
that uses three other services: edit box, label, and keypad.

MENUHMI

SETS_SRVEDITOR

KEYPADservice_GDO

TEXTRES MENUMNGANIMATOR

LABEL

Structure of MENUHMI.UDO, the menu management application module

I D E N T I F Y I N G C O M P O N E N T S

31
The editor component manages all the editing functionality, but uses the
other services to perform the display. LABEL.UDO handles the display of text
for soft keys, KEYPAD.UDO handles the input from the keypad, and
EDITBOX.UDO handles the graphic representation of the edited text as well
as the cursor type and location.

Encapsulation

Our methodology describes a linear process that starts with the collection of
all the relevant information, then proceeds to the design, implementation
and integration stages. However, we know that in reality it is very rare for all
the details of a project to be available, or even decided, when development
starts. In almost all projects, decisions about and revisions of the requirements
continue to be made all through the various stages of development.
Consequently, it is essential to build the application so as to minimize the
impact and cost of changes.

Encapsulation, also known as information hiding, is a useful technique for
the achievement of this goal. Encapsulation allows the internal implementa-
tion of a user object to be modified without requiring any change to the
application that uses it. For successful encapsulation, you need to define the
component with a good interface so its internal logic is insulated from
environmental changes.

Buffering between Rapid and the embedded system

Embedded interface user objects are often complemented by wrapper user
objects. A wrapper is a user object that contains (“wraps around”) another
user object, so that the contained user object can exist in the system regardless
of its internal implementation.

When aspects of the embedded system are not finalized (e.g., it is not yet
known what type of output the embedded system keypad is capable of), or
may vary (e.g., the application is designed to be able to work with different
embedded system platforms), a wrapper user object insulates the embedded
interface component from the rest of the application logic.

EDITOR

LABEL

TEXTRES

KEYPADEDITBOX

Structure of EDITOR.UDO, a service component

A R C H I T E C T U R E D E S I G N

32
The wrapper creates a buffer that protects the Rapid application from the
effects of changes in the embedded interface component. When such changes
occur, all the necessary modifications are made only in the wrapper
component. The use of wrapper components enhances the flexibility of the
Rapid application and greatly simplifies its adaptation to different embedded
system environments.

Extended functionality

Wrapper user objects can also be used to extend the functionality of the
wrapped user object by providing a “translation” mechanism. For example, if
the embedded system keypad is capable only of key in/key out events, the
wrapper keypad user object can add the logic that transforms these events to
short, long, and repeated key presses. In the Ref_Design application this is
exactly what the keypad user object does; it wraps around the embedded
interface component, EMB_KPD.UDO.

Continuous vs. On-Demand Services

Services are divided into two types: continuous services whose functionality is
available whenever the application is running and on-demand services that
must be activated before their functionality can be used. The differences
between the two service types affect their choice of interface as well as their
implementation and are discussed in detail in the following sections.

Continuous services

Continuous services become usable as soon as the Rapid application is started
and remain so as long as the Rapid application is running. The only exception
to this rule is when the need to simulate a “power off” state requires
introduction of an idle mode for the service. Otherwise, a continuous service
is active and accessible all the time. Because they are uninterruptedly active,
continuous services can hold data for the application. The information that
they have about their status is meaningful to, and can be used by, other
components of the application.

Continuous services are used for functionalities that must be always operative
and available.

Example

The following user objects are examples of continuous service components
from the Ref_Design application:

• ABDATA.UDO is the wrapper of the embedded phone book component
(EABDATA.UDO), which hold the phone book data. ABDATA.UDO has a

I D E N T I F Y I N G C O M P O N E N T S

33
number of functions that enable its parent application to perform a variety
of operations on the phone book data (sorting, searching, retrieving, etc.).

• KEYPAD.UDO is the wrapper of the embedded interface keypad
component (EMB_KPD.UDO). It translates the key in/key out events sent
by EMB_KPD.UDO into the differentiated short, long, and repeat key
presses used in the application. It responds to input from an embedded
interface component and generates input to the application.

KEYPAD.UDO is always ready to apply its translation mechanism and does
so automatically whenever it is informed that a key has been pressed. The
service responds to a key press regardless of anything else that takes place
in the application at the same time.

• BACKLITE.UDO mediates between the application and the embedded
system. It tells the embedded system to turn off the back light when the
phone has not been used for longer than a certain period, and to turn the
backlight on when the phone is used again. It responds to input from the
application and generates input to an embedded interface component.

BACKLITE.UDO is constantly on the alert for “key in” events. As soon as it
gets the information that a key press has occurred, it starts a countdown
timer. When the countdown timer reaches zero, the user object notifies
EMB_BKLT.UDO to turn off the backlight.

❖ NOTE: Even though BACKLITE.UDO is a good example of a continuous service,
its functionality was so limited that when we optimized the project, we removed
it and added its functionality to the main application as a mode.

ABDATA
EABDATA

Structure of ABDATA.UDO, the phone book data component

KEYPAD
EMB_KPD

Structure of KEYPAD.UDO, the keypad wrapper component

A R C H I T E C T U R E D E S I G N

34
• ICONS.UDO receives information from embedded interface components
(battery and network) and presents the information as icons on the
phone’s display.

ICONS.UDO is constantly on the watch for relevant information; as soon
as such information is received, it is automatically processed, and the
corresponding icon is displayed.

• SETS_SRV.UDO mediates the flow of settings data (display language,
welcome message, ring sound, etc.) between the application and the
memory area that stores this data.

• CALL_SRV.UDO mediates call management between the application and
the network. For incoming calls, it responds to input from the embedded
network component and generates input to the application. For outgoing
calls, the direction is reversed.

CALL_SRV.UDO holds the status of the current call information for the
application. It waits for both incoming and outgoing calls. As soon as it
detects the presence of either one, it automatically applies the appropriate
processing.

On-Demand Services

In contrast to continuous services that are constantly on the alert for agents
that affect their behavior, on-demand services are “asleep” unless deliberately
awakened. When awake, on-demand services respond to the presence of
appropriate agents just like continuous services. However, on-demand services
return to their dormant state as soon as they have completed their specific
task or when they are given a stop command. As soon as they return to their
dormant state, on-demand services lose all their data and all memory of the

ICONS

EMB_BAT EMB_NET service_GDO

Structure of ICONS.UDO, the service component that displays icons

CALL_SRV

SETS_SRVTEXTRES EMB_NET

Structure of CALL_SRV.UDO, the call notification component

I D E N T I F Y I N G C O M P O N E N T S

35
processing that occurred while they were active. When next activated, they
must be re-supplied with data.

On-demand services are controlled by the user objects that require their
functionality. An on-demand service is called when it is needed and dismissed
as soon as it is no longer in use. When an on-demand service is dormant, it
does not respond to any events in the application.

On-demand services are used for functionalities that take place only under a
particular set of circumstances. For example, in a word processing application
the scroll bar is displayed only when the content exceeds the visible space.
Therefore, this functionality is best handled as an on-demand service.

We want the service to become and remain active only under a specific set of
circumstances. At the same time we want to reserve the option of deliberately
deactivating the service (for example, if the user can choose not to display the
scroll bar). The scroll bar service becomes active only when it is required,
performs its service, then goes back to a dormant state when no longer needed
or when stopped.

Many components may use the same on-demand service; however, at any
given time the on-demand service can serve only a single component.
Although an on-demand service is always governed by the same logic, it uses
fresh data every time it is activated.

Example

The Ref_Design application includes a selection bar that is used in lists of
menu options. The size of the selection indicator varies by the total of
available selections: it is largest when only two selections are available and
becomes proportionately smaller as the list of selections grows.

The selection bar service is activated each time a menu with options is
selected, is then supplied with the relevant data that includes the number of
options, calculates the size of the selection point, draws the bar on the
display, then returns to its dormant state retaining no memory of the data it
used (which is anyway not going to be relevant then). The same process is
repeated when another menu is selected.

The following user objects are examples of on-demand service components
from the Ref_Design application:

• ANIMATOR.UDO displays the animations of the initial display and the
main menu options. It is activated by two modules: the module that
manages the phone’s initial display and the module that manages menus.

A R C H I T E C T U R E D E S I G N

36
It returns to dormant state when it has completed the animation or when
it is explicitly stopped.

• EDITOR.UDO manages editing functionality for various application
modules. It determines writing direction, case, position and shape of the
cursor, etc. The user object does not itself perform the display. The actual
display of the edited strings is performed by another on-demand service
(EDIT_BOX.UDO) that is nested in EDITOR.UDO. See the illustration of
the EDITOR component’s structure on p. 30.

• EDIT_BOX.UDO displays strings. It is activated by EDITOR.UDO and
returns to idle state when it has completed its task or when it is explicitly
stopped.

• POPUPMSG.UDO handles the display of popup messages. It is activated by
the main application and is deactivated either when it has completed its
task or in response to user input. Each time it becomes active, it is supplied
with the appropriate data by the parent application, but the manipulation
of the data is identical.

ANIMATOR

service_GDO

Structure of ANIMATOR.UDO, the component that displays animations

EDIT_BOX
service_GDO

Structure of EDIT_BOX.UDO, the component that displays strings

POPUPMSG

KEYPAD service_GDOLABL

Structure of POPUPMSG.UDO, the component that displays popup messages

I D E N T I F Y I N G C O M P O N E N T S

37
Application Modules

Application modules constitute the top level of the component hierarchy.
They are an organizational tool and usually correspond to the main function-
alities the application offers to its end user. Decisions on the number and
scope of application modules take into consideration the following factors:

• Intuitive division of functionality.

• Development ease and speed, including team development.

• Size and complexity of the involved logic.

Example

In the Ref_Design application, the application modules reflect the various
functionalities the cell phone application offers: phone book management,
call management, and menu management. The following illustrations present
the structures of the call management and menu management application
modules. Both application modules contain a variety of lower-level and
service components.

CALLHMI

CALL_SRV

KEYPAD service_GDOTEXTRES

LABELABDATA

Structure of CALLHMI.UDO, the call management application module

ABDATAHMI

CALL_SRVEDITOR

service_GDO

TEXTRES MENUMNG

KEYPAD

ABDATA

LABEL

Structure of ABDATAHMI.UDO, the phone book management application module

A R C H I T E C T U R E D E S I G N

38
Ref_Design has one additional application module that handles the phone’s
startup activities, i.e., everything that happens in the phone (display of
application name, animated display of manufacturer’s logo, and display of
initial menu) from the moment it is turned on until it is ready for operation.

In a cell phone application that includes games and handles SMS, these
functionailities will each constitute an application module. The main purpose
of the division into application modules is to simplify the conceptualization
and handling of the application.

Using Holders to Share Components

When a component, such as an editor user object or a keypad user object, is
used in other components within a single project, certain adjustments must
be made. On the one hand, in order to facilitate maintenance and conserve
resources, we would want to have a single instance of the user object in the
application. Moreover, some user objects—particularly those that represent
embedded system hardware like an embedded keypad user object—cannot
have more than a single instance in the application. On the other hand, in
order to be truly self-sufficient and stand-alone, each component that uses the
user object would require its own instance.

The design solution lies in the use of holders. Instead of duplicating the
shared user object in each application module that uses it, you can define a
holder for the user object type in each of the relevant modules. All the holders
for the same user object type point to the same user object, thus making it
possible for any number of components to share a single user object. Each
holder acquires the interface elements of the user object it points to, allowing
the parent application to interact with the holder as if it were the user object
itself.

To make it possible for the holder to act as a proxy for a user object, the holder
must be initialized. Initialization of a holder provides it with the pointer link
to its held user object. Normally the main application initializes all holders at
application start. This solution is used in the following illustration.

I D E N T I F Y I N G C O M P O N E N T S

39
Using a holder instead of multiple instances of a user object not only
simplifies the logic of the application, but economizes memory resources.
Memory is allocated for a single instance.

Moreover, the user object defined as the holder’s type does not need to be
included in the application. Rapid provides a holder function that makes it
possible for the holder to generate its user object during runtime. As a result,
RAM for the user object is allocated dynamically, only when the user object is
in use.

In applications with very limited memory resources, you may decide to create
a separate user object solely in order to use it in a dynamically allocated
holder and so achieve better resource management. The same considerations
may lead you to use a holder for a user object even when the user object is
needed only in a single application module.

Example of holder objects used to hold user objects

Init: <Keypad>

Keypad

Main Application

Menu Component

GDO Holder Keypad Holder

Init: <GDO>

Graphic Display
Object

Init: <Keypad>

Keypad

Main Application

Menu Component

GDO Holder Keypad Holder

Init: <GDO>

Graphic Display
Object Keypad

Main Application

Menu Component

GDO Holder Keypad Holder

Init: <GDO>

Graphic Display
Object

A R C H I T E C T U R E D E S I G N

40
Creating the Main Application

When all the application components have been identified and organized,
they must be brought together in the main application. The main application
contains all the application modules and all the shared service and embedded
interface components. The only service and embedded interface components
that are not directly included in the main application are single-instance
components.

The main application is responsible for the proper flow of the allocation. It
populates or clears holders and sets processing priorities.

Example

In the Ref_Design application, there are two single-instance components,
both of them of the embedded interface type: the embedded interface keypad
component (EMB_KPD.UDO) and the embedded interface component that
simulates the phonebook memory (EABDATA.UDO). Both these components
are used by a single service each (KEYPAD.UDO and ABDATA.UDO,
respectively). The services in which they are nested are, however, shared by a
number of different components.

COMPONENT FUNCTIONALITY

The functionality of user objects is defined in the requirements specification.
However, although the sum total of all the components should fulfill all the
requirements specified by the manufacturer, the components identified in the
architecture do not always have a 1:1 relationship with the components
described in the specification. In most cases, it will be necessary to go through
the specification carefully and cull the functionality of each user object.

In some cases this will mean dividing a description of functionality among
several components. An example would be dividing the menu navigation
functionality among the menu application module, the menu manager
service, the list service, and others. In other cases, several functionality
descriptions might belong to a single component. Thus, while in a cell phone
application, as in the case of Ref_Design, a single editor component might
provide both dialing and phone book editing; in the requirements
specification the two editing functionalities are more likely to be described
separately.

C O M P O N E N T I N T E R F A C E

41
COMPONENT INTERFACE

The interface of user objects is their means of communicating both with the
embedded system and with other user objects. The various interface options
were presented on pp. 21–25. Unless the embedded system imposes
constraints on the type of interface, there is a choice between the various
interface options. For example, communication can be achieved by using
exported events and properties as well as by using messages.

Although the differences among interface types have no significant effect on
the Rapid simulation, they can profoundly affect the generated code because
of the way the Code Generator handles each type. The choice of interface
affects both the consumption of resources and the amount of work required
of the system integrator.

The following sections present the code generation implications of the user
interface types to assist you in making the choices.

Interface with the Embedded System

User objects that communicate with the embedded system are of the
embedded interface type, and therefore, are always generated as “interface
only.” This means that their internal logic is removed during code generation.
When interface elements are manipulated through the object’s internal logic,
some manual adaptation will be required in the generated code.

Exported properties

Properties can be used for communication from the parent application to the
embedded system and back. The Code Generator produces two macros and a
“property changed” function for each property. The macros can set and get
the property’s value, and must be implemented by the system integrator.

When a property has been changed in the embedded system (e.g., the set
macro has been used), the Rapid parent application is automatically notified.
When the property has been changed in the Rapid application, the embedded
system is notified through the “property changed” function. This function
must also be implemented by the system integrator.

Properties are limited to simple data types: integer, string, and number. They
cannot be used to implement arrays or data stores.

Example

In the Ref_Design application, we used an exported property to implement
the embedded interface keypad component (EMB_KPD). This component has

A R C H I T E C T U R E D E S I G N

42
an integer-type property named code, which gets a value from the embedded
system and transmits it to the Rapid application.

Although exported properties are available for bidirectional communication,
in EMB_KPD we used the property in one direction only, from EMB_KPD to its
parent application.

Exported events

Events can be used for communication from the embedded system to the
Rapid parent application. The Code Generator creates them as macros that
require no RAM.

TIP: Events are the simplest and most economical means of communication
between the embedded system and the Rapid application, and should be
the preferred interface whenever possible.

Example

The interface of the EMB_KPD component shown above includes two events:
keyIn_Ev and keyOut_Ev. The first is generated when a key is pressed. The
second is generated when the pressed key is released. Together with the code
exported property, this interface makes it possible for EMB_KPD to notify its
parent application about which key the user has pressed.

Instead of the exported property and event interface we chose for EMB_KPD,
we could have used a message interface. In most cases the type of interface is
dictated by the embedded system. When there is a choice, or when the
embedded system environment has not been finalized, the more efficient
interface should be preferred. In the case of EMB_KPD, a message interface
would have required considerably more RAM (see the following section). The
additional RAM consumption is particularly unjustifiable in view of the small
amount of data (one integer) involved.

Messages

Messages enable sending “data-combined-with-an-event” from the embedded
system component to the parent application and vice versa. The data of a

code (integer)

keyOut_Ev

keyIn_EvEMB_KPD Events:

Properties:

Interface of EMB_KPD.UDO, the embedded keypad component

C O M P O N E N T I N T E R F A C E

43
message is organized in structures that can consist of fields of strings, integers,
numbers, arrays, and other structures. A structure must be part of a union. A
single union may contain many structures.

The RAM resources required by messages are determined at the union level by
the largest structure member. In other words, a union takes up the same
amount of RAM regardless of the number of structures it contains. Adding
more message structures to an existing union does not increase the required
RAM. Therefore, when a union already exists, as many messages as possible
should be added to it. However, when only a small amount of data needs to be
transferred, it is more economical to use a property instead of a message.

Example

A pointer type message interface is used in the interface of the embedded
phone book component EABDATA.UDO.

The advantage of this type of interface lies in avoiding data duplication.
Because the phone book data is already stored in the memory of the
embedded system, instead of copying the data into Rapid, we use a pointer
to reference the respective memory area.

Data containers

When sending the message is not required, a message interface without the
send/receive mechanism can be used as an economical data container. When
the proper code generation option is used (see “User objects generated as data
containers” on p. 20), the Code Generator leaves out the activate, send, and
deactivate functions, thereby reducing ROM usage. The data in the user
object’s message interface can be accessed by both the parent application and
the embedded system through an exported function of another interface-only
user object that uses the data container object as a parameter.

Union EmbData_u
Structure EmbData_str

Entry_str Array Array
Integer RecNum
String F1
String F2

Integer Error

getEMBdata

embReady_evEABDATA Events:

Messages:

Functions:

Interface of EABDATA.UDO, the embedded phonebook component

A R C H I T E C T U R E D E S I G N

44
Example

In the Ref_Design application, we implemented this type of interface in the
settings component (SETS_SRV), which holds a variety of setting parameters
such as last selected language, welcome greeting, and ringer volume.

Replacement of a standard message interface by a ROM-saving data container
was made possible by the fact that the message’s send/receive mechanism is
not used in the application. This component is held as a pure data object by
the other components that require the settings data.

Interface Among Full User Objects

User objects that do not communicate with the embedded system are usually
generated as full objects (*.udo). This means that all their internal objects and
data is generated, and no additional user code is required. However, the
choice of interface type may affect resource usage and performance.

Exported properties

Properties can be used for communication between a child user object and its
parent application. A property change in either one of them is noted in
Rapid’s trigger queue. The state machine then checks all the application logic
dependent on this property-change trigger, and performs all the logic that
applies to the active modes in both the parent application and the child user
objects.

In order to make use of the property change, the Rapid developer must build a
condition-only transition that is based on it. We recommend avoiding the use
of condition-only transitions in internal transitions because when such
conditions remain true for an extended time, they burden the system.

Properties are limited to simple data types: integer, string, and number. They
cannot be used to implement arrays or data stores.

Interface of SETS_SRV.UDO, the settings component

Union user
Structure data

Integer RingerVolume
Integer backlight
String greeting
String provider
Integer language

SETS_SRV Messages:

C O M P O N E N T I N T E R F A C E

45
Example

The interface of the editor component (EDITOR) includes a string-type,
exported property named editText. This property is used bidirectionally: to
pass a text string to the editor for editing, then return the text to the parent
application when editing has been completed.

Exported events

Events can be used for communication from a user object to its parent
application. They are generated as macros that require no RAM.

TIP: Events are the simplest and most economical means of communication
from a user object to its parent application, and should be the preferred
interface whenever possible.

Example

The interface of the EDITOR component presented above includes two events:
OK and Exit. The OK event tells the parent application that the current editing
activity has been completed. The parent application uses this information to
determine the appropriate editing mode—text or numbers. The Exit event is
sent by the EDITOR upon its return to idle mode and informs the parent
application that the EDITOR no longer uses the graphic display object.

editText (string)

goToIdle

ExitEDITOR

OK

setWindow

startEdit

init

EditMode_CS (constant set)

Events:

Properties:

Functions:

Interface of EDITOR.UDO, the component that manages editing functionality

A R C H I T E C T U R E D E S I G N

46
Messages

Messages can be transmitted from a user object to its parent application and
vice versa. A message can be viewed as a property and event combination
since transmission of a message triggers a messageReceived event in the
receiving component and the data, i.e., the fields of the message structures,
can be used.

However, since Rapid builds a copy of the message in both the source and
the destination components, the use of a message requires twice the RAM
resources as compared to the use of an exported event and property.

Whenever possible, avoid using messages.
Instead, use either an exported event and property combination (for
communication from the user object to its parent), or an exported function
(for communication from parent to child user object).

TIP: Messages can be successfully used to share large amounts of data between
user objects—provided the data container method of code generation is
used. By generating the user object with the message interface as a data
container, the extra copy of the data is avoided and RAM usage can be
significantly reduced.

Example

In the Ref_Design application, the phone book component—ABDATA—uses a
message interface. In the following illustration, the message interface is
located at the bottom of the logic list.

The parent application (i.e., the phone book management application
module) uses ABDATA’s exported function (getRecord: <Integer: recordNum>
count: <Integer: RecordCount> sortedOrder:<Integer:SortedOrderFl>) to access the
phone book data on the embedded system. When ABDATA has obtained the
requested data, it makes it available to the parent application through its
message interface.

ABDATA’s message interface is also used to transfer data from its parent
application to the embedded system. When the parent application has
modified the phone book data (by adding or modifying fields in the
GetRecordSet structure), it uses the SaveRecord message to save the updated
phone book data on the embedded system.

C O M P O N E N T I N T E R F A C E

47

Component Interface Examples

This section presents examples from the Ref_Design application.

Application modules

The interface of application modules usually consists of three functions and
an event. The functions are designed to:

• Initialize all the holders in the module.

• Activate the module.

• Stop the module’s activity.

Union SaveRecord

Union GetRecordSet

init

deleteAll

Ready_EvABDATA

deleteRecord

getRecord

FirstEmptyRecord (integer)

StatusCode (integer)

MaxRecords (integer)

UsedRecords (integer)

sortByField

searchFor

start

Functions:

Events:

Properties:

Messages:

Interface of ABDATA.UDO, the phone book component

A R C H I T E C T U R E D E S I G N

48
The event is designed to notify the parent application that the module’s
activity has stopped and that it is back in idle state.

The call management application module CALLHMI exemplifies this type of
interface as shown in the following illustration:

The function initCallHMI allows the main application to initialize the
component with the appropriate arguments. The initialization of fonts is
performed by a separate function because when the cell phone user selects a
different language only the fonts need to be adjusted accordingly. The
functions start and stop make it possible for the main application to start and
stop the component’s functionality. The component uses the exit_Ev event to
notify the main application that it has stopped its activity and returned to idle
state. Since the main application serves as a task manager, it needs to know
when it can safely allocate shared resources to a different component.

Service components

Service components do not have a typical interface. Their interface is
determined for each component on the basis of its functionality requirements
and the developer’s judgement.

The following illustrations present the interfaces of two service components.

start

initCallHmi

exit_EvCALLHMI Events:

Functions:

stop

initFonts

Interface of CALLHMI.UDO, the call management component

start

initIconsICONS

stop

Functions:

Interface of ICONS.UDO, the service component that displays icons

C O M P O N E N T I N T E R F A C E

49
The ICONS component displays various indicators: RSSI level, battery level,
etc. Its interface is similar to the interface of application modules. It consists
of three functions: initIcons, stop, and start that allow the parent application to
initialize, start, and stop the component. ICONS receives the information it
needs to display from its held objects. For example, the EMB_NET component
provides the data for the RSSI level, incoming messages (voice and text), and
roaming distance, while the EMB_BATT component supplies information
about battery level.

Unlike application modules, the interface of ICONS does not include an exit
event. In application modules, the purpose of this event is to notify the main
application that the respective application module is no longer using shared
application resources such as the graphic display object. These resources can
now safely be used by a different application module with no risk of clashing.
Although ICONS uses the graphic display object, there is never any clash risk
because ICONS uses an area of the graphic display object that is exclusively
dedicated to it and is not available to any other component.

The LABEL component displays the legends of soft keys. Its interface consists
of three functions: initLabel, initFonts, and drawLabel. The two init functions
serve the same purpose as in the application module CALLHMI (see p. 48).
The drawLabel function activates the LABEL component exactly in the same
manner as the start function activates the ICONS component. Since the
activity of the component automatically stops as soon as the drawLabel
function has been executed, and since we never wish to stop the drawing
before it has been completed, there is no need for a stop function.

drawLabel

initLabelLABEL

initFonts

Functions:

Interface of LABEL.UDO, the service component that displays the soft key text

A R C H I T E C T U R E D E S I G N

50
Here is the interface of the KEYPAD continuous service component.

The KEYPAD component mediates between the EMB_KPD component and
the application. It translates the events received from EMB_KPD and converts
them into events that are meaningful to the application. It also expands the
functionality of EMB_KPD by adding a distinction between short and long
key presses.

In the KEYPAD component, we use a pair of events: short and long for each of
the control keys. For the alphanumeric keys, we use two generic events: short
and long accompanied by the LastKey property, which indicates the value of
the key that has been pressed. The different treatment of the two key types
corresponds to the difference in their functionality: the control keys execute
various operations while the alphanumeric keys are used in editing. Therefore,
the values of the alphanumeric keys can be meaningfully used by the editor,
but there is no such use for the values of the control keys.

The ControlKey_Short event provides a way of referring to any key in the
group of control keys. This event is helpful in implementing the backlight
mechanism.

ControlKey_Short

LastKey (integer)

AlphanumericKey_Long

AlphanumericKey_ShortKEYPAD Events:

Properties:

Event short for each control key:
ArrowDown_Short
ArrowUp_Short
End_Short
Left_Short
Right_Short
Send_Short
VolumeDown_Short
VolumeUp_Short

Event long for each control key:
See above list

Interface of KEYPAD.UDO, the continuous service component that wraps around
the embedded keypad component

R A P I D A N D S Y S T E M A R C H I T E C T U R E

51
RAPID AND SYSTEM ARCHITECTURE

System architecture considerations mainly affect the integration of the Rapid
generated code, but should be considered during the design stage as well.
These include task architecture, task communication and memory allocation,
task priority, and the distribution of resources among tasks and components.

Task Architecture

Rapid usually executes as a single task. In order to interface with other
software, you should define suitable interfaces in Rapid’s embedded interface
components. The best way to implement interface between Rapid and
software running in a different task is via message interface.

Sometimes, a Rapid application contains a user object whose main purpose is
to provide graphic functionality via a graphic display object. This graphic
functionality can be split from the main task into a separate task (for details,
see “Code generation of an “Empty task”” on p. 53). Full multi-tasking
support is planned for RapidPLUS CODE version 7.01.

Rapid API must be called only from the Rapid task.

Inter-Task Communication and Memory Allocation

Memory allocation for interface messages

When a message is used in an embedded interface component, memory for its
data can be allocated either statically or dynamically:

• Static allocation (buffer type) is performed by Rapid and is the default
memory allocation method. Rapid internally allocates for each union a
buffer that is large enough to accommodate the union’s largest structure.

• Dynamic allocation (pointer type) uses memory that is provided by the
underlying embedded system and is identified by a pointer.

In a message that uses buffer-type memory, the data is copied from the
embedded structure into the buffer after a message using the generated API
has been sent to the Rapid application. In a message that uses dynamically
allocated memory, the data is not copied; rather, the actual buffer is used
by Rapid.

A R C H I T E C T U R E D E S I G N

52
Message allocate/free policy

When dynamic allocation is used, rules for the allocation and release of
memory should be defined. When a message that includes data is sent from
one task to another, these rules make it clear which task is responsible for
releasing the allocated memory.

When the allocation policy states that it is the responsibility of the message-
receiving task to free the allocated memory, pointer-type messages are the best
type of interface. The code generated for the deactivate function of a message
includes a user code section that can be employed to release memory that is
no longer required by Rapid.

Rapid Task Priority

The Rapid application normally deals with user interface issues involving
multiple display activities. It is the nature of such activities to consume
considerable CPU resources. In order to avoid performance degradation, the
Rapid task should be assigned a relatively low priority.

Starvation of the System

In non-preemptive multitasking systems, programmers need to break long
operation sequences into smaller units in order to avoid “starvation” of other
tasks. Since the Rapid state machine works in cycles, the Rapid developer does
not need to address this issue. At integration time, the system integrator can
program the Rapid task to call for rescheduling after each cycle. Thus, the
execution of a long loop based on the Rapid state machine will not bring the
entire embedded system to a halt. The execution of the logic will be
automatically “sliced” by Rapid into state machine cycles.

The number of Rapid state machine cycles performed in each “task cycle” (i.e.,
during the processing of a message received by the task) should be fine-tuned
during integration. For additional information, see “Limiting the Number of
Consecutive State Machine Cycles” on p. 86.

UI Required in Different Tasks

Rapid application execution is based on a state machine model. The state
machine supports concurrency by using concurrent modes and by assigning
concurrent logic to separate components. Sometimes, however, user interface
services are required by external software that is executed in different tasks.

R A P I D A N D S Y S T E M A R C H I T E C T U R E

53
For such cases, the following architecture solutions are available:

• The Rapid task will provide user interface services to other tasks.

• A separate task will provide user interface services to the Rapid task and to
other tasks. In this case, generation of a component as an empty task can
be used to develop this task in Rapid.

Code generation of an “Empty task”

This approach is especially useful for systems with a graphic display, in
which the display functionality runs in its own task in order to serve several
applications running in different tasks (such as a WAP browser). Rapid’s
graphic display object (GDO) implements the functionality of a graphic
display.

Rapid supports code generation for the GDO by supplying C language graphic
libraries and generating code that uses them. To facilitate this, Rapid allows
users to generate code for user objects that includes only their objects and
functions (with some limitations) without the state machine functionality
(generate as an “Empty Task”). This means that the generated user object can
use Rapid’s objects, but does not incur the cost of the state machine engine.

For more information , see “User objects generated as empty tasks” on p. 20.

Timer Integration

The Rapid application must be integrated to a timer service provided by the
embedded system. Two types of APIs are available: continuous timer update
and update timer on request. The type used is determined by the design of
the embedded system.

The update timer on request API should be used for a system that implements
sleep mode (for saving batteries).

If continuous timer update API is used, the timer service should send a
message to the Rapid task in a predefined frequency. This frequency can be
defined based on performance issues. Frequency should be high enough for
the timers defined in the application to work correctly, but not too high in
order to avoid degradation of system performance.

When the Rapid task receives a message (or other notification) from the timer
service, an additional state machine cycle should be executed so that internal
logic not related to user input (condition-only transitions, mode activities,
and transitions based on generated events) will be performed. The function,
rpd_PrivUpdateTimer, can be called to execute the additional state machine
cycle.

A R C H I T E C T U R E D E S I G N

54
DESIGN REVIEW

When the architecture of the application has been completed, the list of
components and their hierarchy must be reviewed and approved by the
various participants in the project. It is essential for the review forum to
include at least one senior representative of each of the groups involved in the
project.

The format of the review and approval may vary from one organization to
another, and can be conducted in any way that is convenient to the
participants. The design review is an essential step before moving on to the
implementation stage because it provides a final opportunity for detecting
flaws in the design when corrections are still relatively easy and inexpensive
to make.

55
C H A P T E R 4

Implementation
The output of the architecture design is a hierarchical list of the application
components including descriptions of the functionality and interface of each
component. During the implementation stage, each component “comes to
life” as a Rapid user object with its objects, mode tree, logic, and interface.

This chapter presents information on:

• Setting implementation priorities.

• The implementation procedure for individual components.

• Tips for fine-tuning the implementation.

I M P L E M E N T A T I O N

56
SETTING IMPLEMENTATION PRIORITIES

Implementation of the various components should be a bottom-up process.
You should start with the lowest-level components (embedded interface
components) and move up the component hierarchy. This direction is
dictated by Rapid’s modular and hierarchical structure.

A component that uses other components cannot be implemented as long as
they are not available. Implementation should therefore start with the
embedded interface components, proceed to continuous and on-demand
services, go on to the application modules, and culminate in the creation of
the main application.

A component can be integrated into another component as soon as its
interface is ready, even if its internal logic has not yet been written. In order
to expedite implementation of higher-up components, the implementation
of each component should start with its interface, and then continue with its
internal logic. The idea is to create the skeleton of the application as soon as
possible, then go back and fill in its functionality.

In completing the functionality of each component, the general principle for
implementation priorities is to move from the most significant elements to
the less significant ones. For example, a call module will first implement
outgoing/incoming calls, then call waiting, then conference calls, and so on.
Within each element, you should start by implementing the minimum, basic
functionality, then continue to elaborate on it. For example, in a phone book
application, you will first implement the retrieval and presentation of entries
to allow other modules to get data from the phone book (e.g., the call module
will get the number to call), then you will add logic for entering, deleting, and
changing data in the phone book.

The Application Properties window provides a simple tool for version control
of the individual components (refer to the section “Using the Application
Properties Window” in Chapter 1 of the User Manual Supplement).

Assuming that implementation is a group effort and that each component
may be used in several others, a procedure that controls the availability and
update of components as they are progressively implemented is of the utmost
importance. One way to achieve such control is by creating a component
bank that is managed by a single person and is updated at set intervals.
Another option is to use the organization’s configuration management tools
with its check out/check in mechanism.

I M P L E M E N T I N G C O M P O N E N T S

57
IMPLEMENTING COMPONENTS

In this section you will read about implementation steps common to all
components, implementation of embedded interface components,
implementation of service components, implementation of graphic display
objects (GDO), and implementation of holders.

Component Implementation Procedure

For each application component, apply the following implementation steps:

1. Create the component’s interface.

2. Write the component’s logic.

Follow the priorities presented in the preceding section. Verify that all the
objects and functions you use can be generated (refer to Appendix C:
“Generated and Nongenerated Elements” in the Generating Code manual).

3. Consider maintenance and optimization.

Follow these basic rules to improve maintenance and optimize the
generated code:

• Add comments to your logic to make it easier to understand.

TIP: Precede each user function with a comment that describes it. When
you generate the Object Interface report, the comments are included.

• Build user functions when appropriate.

When the same logic is used in several places, it is useful to encapsulate
it as a user function, with or without arguments. Instead of having to
rewrite the entire block each time, the user function can be called.

Replacing repeated logic by user functions has the additional
advantage of simplifying maintenance. You can also employ user
functions to streamline the logic and make it more readable. For
example, you can create a user function that encapsulates all the
initialization activities.

• Use as many modes are necessary to create a readable mode tree.

Modes make your logic more readable and—when used correctly—
improve performance. They consume very little memory.

I M P L E M E N T A T I O N

58
• Set an appropriate size limit for each data object.

Set default string and array size limits in the Data sizes tab of the Code
Generation Preferences dialog box. When possible, reduce the size of
individual strings and arrays to economize memory usage.

❖ NOTE: Rapid default size limits are environment-dependent (stored in the
Rapidx.ini file) and may change when you switch from one computer to
another.

4. Run the Verification test when implementation has been finalized.
Remove unreferenced objects and solve detected logic problems.

5. Build a test application and test the component.
For each component, build a test application and test all the interfaces and
functionality before integrating the component.

Implementing Embedded Interface Components

Embedded interface components fall into two groups: user interface (UI)
components such as the keypad and the display, and non-UI components
such as the cell phone’s battery, the protocol stack, and the radio signal
strength indicator. To allow the user to control non-UI interface elements, you
could create a simulation panel. For example, you could add a potentiometer
to manipulate the signal strength and several buttons to send protocol stack
messages.

Implementing the full functionality of the simulation panel is costly and
unnecessary. Leaving the functionality of these components altogether out
of the simulation and postponing testing of their input/output until the
application is integrated into the embedded system is extremely risky.

TIP: When using a simulation panel, implement only the minimal
functionality necessary to produce an appropriate data output for the
application. The minimal functionality should be sufficient for testing
the application’s functionality already in the simulation environment.

The simulation panel is usually implemented as several embedded interface
components and uses interface elements to communicate with the Rapid
application. Thus, not only the application’s functionality but also its
interfaces can be tested. During code generation, the internal logic of these
components—generated as interface only—is ignored, and only their interface
elements are generated.

When the simulation panel is distributed among several embedded interface
components, and the various components need to communicate with each

I M P L E M E N T I N G C O M P O N E N T S

59
other, Rapid’s DDE or Applink objects can be used to establish such
communication without requiring extra interface elements.

Implementing Services

Unlike continuous services whose functionality is always available, on-
demand services alternate between the idle and active states, and their
functionality is available only in the latter. This difference affects the
implementation of the two types of components, and is reflected in their
mode trees.

On-demand services typically have a mode in which the service is dormant
(in the Ref_Design application, this mode is named “idle”, but you can use the
name of your choice) and a mode in which the service is active (“active” in
Ref_Design). The transition from idle mode to active mode is triggered by a
specific event (a function call or a message from the parent)—the demand for
the service—following which the functionality of the service becomes
available. When the service has been completed or is no longer required, it
returns to idle mode.

Continuous services, whose functionality is always available, do not have an
idle mode. If it were not for the use of holders, the default mode of
continuous services would be “active”. Rapid commonly uses holders for
shared components to avoid multiple instances of the same component.
Consequently, both continuous and on-demand services have an
initialization mode (named “init” in the Ref_Design application) as their
default mode. The purpose of this mode is to verify that the service’s holders
have been initialized (i.e., assigned instances of the user objects) before a
transition into idle mode (in on-demand services) or active mode (in
continuous services) is allowed to take place.

The basic mode tree of on-demand services typically consists of three modes:
init, idle, and active. The basic mode tree of continuous services typically
consists of two modes: init and active.

Implementing the Graphic Display Object

At this stage of development, it is usually known whether the display is to be
implemented by Rapid’s graphic display object (GDO) or by an embedded
interface component that will be simulated in Rapid.

When using a GDO, you need to determine the number and size of the GDO’s
buffers and define its update mode. These decisions affect the manner in
which logic involving the GDO is written as well as the object’s resource usage
and response time, and should therefore be given careful consideration.

I M P L E M E N T A T I O N

60
Number and size of buffers

For each GDO, Rapid allocates an intermediate buffer whose memory size is
determined by the number of pixels and color depth of the GDO. In addition,
you can define additional GDO buffers of variable sizes. Using buffers is very
convenient. By saving the content and status of the GDO (including the
current font) into a buffer, you keep it available for immediate re-display. The
price paid for this convenience is in RAM consumption. Each buffer requires
its own memory allocation—the bigger the buffer, the larger the required
allocation.

When a fixed, small section of the display is reserved for the exclusive use of a
given component—for example, the area reserved for informational icons on
a cell phone’s display—then you can limit the size of the additional buffer to
the respective display area, and so enjoy the advantage of a dedicated buffer
without unduly increasing resource consumption.

Update method

All drawing on the GDO is first performed on a buffer (the intermediate buffer
or a user-defined buffer), then copied to the embedded display. By default, the
GDO is in “immediate update” mode, i.e., the display is automatically
updated after each drawing operation. However, you can change the update
mode to “update on request”, i.e., the GDO is updated only after an update
function is used. In “update on request” mode, many draw operations can
take place before the GDO is updated. The GDO’s update mode can be
changed during runtime.

The “update on request” mode can eliminate flickering and can improve the
GDO’s refresh rate when changes are made on a relatively restricted area of
the display. For example, you might have a series of primitive graphic
elements being drawn near one another on the GDO. Or, you might have
different user objects that draw on different buffers. In these situations, it
would be good practice to put the GDO in “update on request” mode and call
the update function at the end of the sequence of draw operations. See the
following illustration.

On the other hand, if your incremental changes are widely distributed over
the display, the efficiency of “update on request” mode is seriously
undermined and “immediate update” mode may give better results. The
reason is that each time you call the update function, Rapid redraws the area
within the smallest possible bounding box that encloses all the changes made
since the last update. If the changes are in opposite corners of the GDO, the
redraw area spans almost the entire GDO. In this case, it would be better to
work in “immediate update” mode, whereby Rapid only redraws the small
area that has changed as the result of each draw operation.

I M P L E M E N T I N G C O M P O N E N T S

61
TIP: When the application contains numerous user objects, possibly built by
different developers, it is important to define usage rules for the GDO.
Since the GDO is commonly assigned to holders in several different
components, usage of the GDO in one component may affect its
behavior in another. In addition, we cannot always predict where and
when drawing on the GDO will take place. In order to maintain control
of the GDO and prevent undesirable displays, it is safer to work in
“update on request” mode and add an update call in the logic of each
component whenever the drawn content is ready for display.

Using Holders

Holder objects are one of the most powerful features of Rapid. They make it
possible for a single instance of a user object to be shared by several
components. The implementation of holders takes place in the components
that contain them and in each of the component’s parent application.

In each component that contains a holder:

1. Add a holder (without a default object) for the shared user object.

2. To the component’s interface, add an exported function that allows the
parent application to initialize the holder at startup. Initialization assigns
the user object to the holder.

3. In the component’s mode tree, define a default mode that verifies holder
initialization, i.e., transition out of the default mode takes place only after
the component’s holders have been initialized. The purpose of this mode
is to safeguard against the component becoming operative while its
holders are empty.

4. In all logic that applies to the shared user object, reference its holder.

The filled rectangles are drawn by 3 separate calls to the drawFilledRectangle function.
The dashed rectangles represent the area redrawn when calling the update function.

Probably better to use
immediate update mode

Good candidate for update on
request mode

I M P L E M E N T A T I O N

62
In the parent application:

1. Add a single instance of the shared user object.

2. At startup, initialize the holders of the shared user object by calling the
initialization exported function of the relevant components.

An alternative holder initialization method is to use the holder’s holdNew
function to generate its object dynamically during runtime. When this type of
initialization is used, it is not necessary to apply the initialization steps
described in the steps above (steps 2 and 3 in the component implementation
and steps 1 and 2 in the parent application implementation).

Dynamic generation of a holder’s object can be used to reduce RAM usage,
especially when the held object is not constantly in use. When no longer
needed, the held object should be removed by using the holder’s clear
function. Holders of objects that are continuously used—such as the holder of
a keypad component in a cell phone application—should never be cleared.

IMPLEMENTATION TIPS

The information in this section helps you polish the implementation in order
to improve performance both in the simulation and the embedded system
environments, to minimize the size of the generated application, and/or to
enhance the application’s maintainability.

Verification Test

Once the implementation is in its final stages, you should run a verification
test, as described on pp. 12-38 to 12-42 of the Rapid User Manual. The
verification test notifies you about modes that cannot be reached or exited,
transitions without triggers, ambiguous transitions, and objects that are not
referenced by the logic. Use these warnings to delete superfluous logic
elements from the application.

I M P L E M E N T A T I O N T I P S

63
Code Generation Messages

During code generation, the Code Generator builds and displays a log of the
code generation process. The log includes errors, warnings, and messages that
are important for troubleshooting code generation difficulties. For details,
refer to Appendix E, “Errors, Warnings and Messages” in the Generating Code
manual.

The code generation log includes messages about unreferenced objects,
commented out logic lines, and unused user functions that were ignored
during code generation. Use these messages to eliminate unnecessary logic
and objects from the application.

Modes vs. Conditions

A basic rule in Rapid application development is to control the flow of system
behavior through mode sequences rather than complex condition-checking.
For example, you might have a situation in which the user enters a three-
character alphanumeric string, and the format of each character or digit needs
to be validated before the system enters the next mode.

One possibility would be to build a complicated condition trigger that checks
all three characters, along the lines of: & Str1[1] = x and Str1[2] = y and Str[3] = z.
However, in order to improve performance and enhance maintainability, it is
preferable to build a small subtree as shown below:

& Str1[1] = x

& Str1[2] = y

& Str1[3] = z takes you to the
appropriate mode when the code
is valid

I M P L E M E N T A T I O N

64
Managing Priorities

Proper structuring of the mode tree can help you manage prioritized behavior.
By creating the prioritized behavior as a higher mode in the tree, you avoid
repeating the same transition-checking logic in each lower sibling mode.

Example

Priority management is implemented in the Ref_Design application through
the modes, NoServiceNotification and HighPriorityErrorMessage. The
following illustration presents part of the mode tree.

According to the requirements, all Ref_design functionality is disabled when
there is no reception (i.e., following a no-service notification). Instead of
creating an internal transition that checks for this trigger in each of the modes
in the MainHMI subtree, the trigger is checked only in the MainHMI mode,
where its presence causes a transition to NoServiceNotification thus disabling
all of MainHMI’s child modes.

I M P L E M E N T A T I O N T I P S

65
Another requirements specification of Ref_Design is that high-priority error
messages such as a “low battery” message disable all functionality including
the display of the no-service notification. Instead of adding logic that checks
for this trigger in both branches of the NormalOperation subtree, this trigger
is checked only in the NormalOperation mode, where its detection brings
about a transition into the HighPriorityErrorMessage mode and disables all
the child modes of NormalOperation.

The following state chart clarifies how the hierarchy in the Active and
MainHMI subtrees manages the priorities described above.

Active has two child modes: NormalOperation and HighPriorityError-
Message. When a transition from NormalOperation to its sibling
HighPriorityErrorMessage takes place, it shuts off access to the child modes
of NormalOperation. Similarly, the transition from MainHMI to its sibling
NoServiceNotification closes the passage from MainHMI to its child modes.

I M P L E M E N T A T I O N

66
Streamlining Processes

To efficiently implement repetitive behavior, it is a common practice in Rapid
to implement the logic of a shared process in its own concurrent subtree.
Here’s a typical sequence in which a concurrent process (string) triggers a user
event to activate another (draw). In this way, the drawing functionality can be
accessed from anywhere in the mode tree, as illustrated below.

This approach was very common in older versions of Rapid. Since Rapid 6,
when new control structures (such as loops and If...Else blocks) were
introduced, it has been recommended to write a draw function that includes
all the relevant conditions—using If...Else blocks—and to call this function
whenever a drawing operation is required.

Avoiding Processor-Intensive Logic

The following types of application logic should be avoided, since they tend to
demand very high levels of processor resources:

• Condition-only internal transitions that are always true.

• Condition-only default transitions from a mode to itself that are always
true.

• Condition-only transitions to an ancestor that are always true.

In both cases, use compound transitions that include an event, such as a timer
object tick event, or an event object triggered event.

�Triggered by keyPressed event �Triggered by Event1

�Draws and
triggers Event2

�Triggered by Event2�Sends the data and
triggers Event1

�Triggered by Event1

I M P L E M E N T A T I O N T I P S

67
Blocking Operations and Loops

Loops can be implemented in Rapid in the following two ways:

• For/While logic blocks.

• Modes and internal condition-only transitions.

For/While logic blocks are executed as a single unit in a single cycle of the
state machine. For the duration of this cycle, no other events or logic can be
processed in the entire application.

When using modes and an internal condition-only transition, it requires
several state machine cycles to complete the loop, but it never blocks input
from other parts of the system.

For/While blocks should be used when the loop can be completed in a short
time, as is usually the case. When the loop is very long or when completion of
its activities may take long (e.g., reading data from flash memory), it is
preferable to use modes and a condition-only transition.

Objects

When building an application for code generation, there are certain issues to
consider when choosing which objects to use and how to use them.

Simulation-only objects

At the most basic level, bear in mind that not all Rapid objects and functions
are supported for code generation. (Refer to Appendix C: “Generated and
Nongenerated Elements” in the Generating Code manual for a comprehensive
list of supported objects and functions.) All such objects should be
encapsulated in user objects to be generated as interface only.

❖ NOTE: The code generation log warns you about functions, objects, and
properties used by the application that could not be generated. Such warnings
may or may not be followed by improper application performance and should be
investigated before compiling and linking the code.

When a user object has been generated as interface only, its exported
functions (generated as empty functions) have to be implemented. For

I M P L E M E N T A T I O N

68
example, a user object named MYOBJECT may have an exported function
that looks as follows in the Function Editor:

In the user object’s generated .c file, the function looks as follows:

void MYOBJECT_R3245_incrementCounter_ (pMYOBJECT udo,
RapidInteger* Parm_Integer1)

{
/******* RapidUserCode BEGIN MYOBJECT_incrementCounter_ ********/
/******* RapidUserCode END MYOBJECT_incrementCounter_ ********/

}

Using the integer object manipulation functions, the exported function
would be implemented in the user code area as follows:

/******* RapidUserCode BEGIN MYOBJECT_incrementCounter_ ********/
RapidInteger_set (Parm_Integer1, RapidInteger_get
(Parm_Integer1)+1);
/******* RapidUserCode END MYOBJECT_incrementCounter_ ********/

For a list of the functions available to the embedded system programmer for
manipulating Rapid objects that are passed as parameters by exported
functions, refer to Appendix F: “RapidPLUS Object Manipulation Functions”
in the Generating Code manual.

Object “weight” in the generated code

See Appendix A: “Memory Consumption” for important information on the
relative impact of various objects on the size of the generated code. When the
generated application size is an issue, you can use this information to
optimize object usage in the simulation application.

69
C H A P T E R 5

Optimization
The importance of optimizing code sizes and performance has been
emphasized throughout the application building process. Commonly, the
resources available to the Rapid task are limited and constitute a constraint
with which the Rapid task must comply. It is therefore advisable to start
resource monitoring as early as possible. Such monitoring can be applied even
to individual components, although it may be difficult to interpret the data in
isolation. Certainly, the analysis of resource usage should be undertaken as
soon as the various components are combined to make up the application,
even before all of its functionality has been implemented.

Resource optimization must be an ongoing process, reaching its final stage
when the application is integrated in the embedded system, and culminating
in an application that does not exceed its resource budget. Performance
checks are not very meaningful outside the embedded system environment.
However, they too should be applied as early as possible. Obvious
performance-slowing elements, such as very long or very high-frequency
loops, can already be detected in the simulation environment. Where
response times are crucial, particularly when they are detailed in the
requirements specification, integration should be performed at an early stage,
so that performance data can be obtained and improved if necessary.

Once the need for optimization is established, you can use a variety of
diagnostic tools to identify objects with excessive resource usage, then analyze
these objects to pinpoint where and how optimization can best be applied.

This chapter presents information about:

• Diagnostic tools for analyzing resource usage and performance.

• Techniques for optimizing RAM usage.

• Techniques for optimizing ROM usage.

• Ways to improve performance.

• An optimization case study.

O P T I M I Z A T I O N

70
MEMORY USAGE DIAGNOSTIC TOOLS

Rapid and the development environment provide several diagnostic tools that
identify code areas that require optimization. These tools are:

• The Rapid Object Data report.

• The Rapid RAM Size Report utility.

• The linker-produced map file for RAM and ROM information.

• Performance information obtained from Rapid’s Debugger and Logger
tools.

Rapid’s Object Data Report

This report provides information about the objects in the component, and
can help identify objects with excessive sizes. Its great advantage is that it is
produced directly from Rapid (Reports|Objects|Data) and requires no linking
or code generation.

The following illustration shows an excerpt from an Object Data report.
The circled area alerts you to the fact that the size of the string has not been
limited and that the Code Generator will apply to it the default string size.
If you know that this string requires a smaller size, you may decide to change
the string definition accordingly.

M E M O R Y U S A G E D I A G N O S T I C T O O L S

71
The Rapid RAM Size Report Utility

The RAM Size Report provides RAM usage information for the Rapid task of
the embedded system. It is produced by a Rapid-provided utility that uses the
output of the Code Generator. For a full description of the report and detailed
instructions on how to produce it, refer to the RAM Size Report document
located in the Manuals folder of Rapid.

The RAM Size Report is available in detailed and summary formats. The
summary format presents a line of information for each component of the
application, and should be sufficient to alert you to unexpected or excessive
RAM sizes. In large applications, you might find it useful to import the report
into a program that provides sorting options, such as Microsoft® Excel, and

O P T I M I Z A T I O N

72
sort the objects by size. You should start your analysis with the highest RAM
components and proceed to those that require less RAM.

 The following illustration presents an example of the summary report.

For a detailed analysis of RAM usage in individual components, you can use
the detailed format. This format breaks down RAM usage by individual
component objects.

M E M O R Y U S A G E D I A G N O S T I C T O O L S

73
The following illustration presents an example of the detailed report for the
ICONS component.

Once again, importing the report into a program that provides sorting options
will help you identify the objects that use the most RAM, so you can focus on
them first.

The detailed report can also alert you to the use of many objects of the same
type (for example, eight integers) whose number could be reduced by using
the same object (i.e., the same integer object) in several places.

The Linker’s Map File

The Linker produces a map file that provides information about ROM and
RAM usage for all the linked objects, of which the Rapid application is one.
The format of the information and its level of detail vary from one Linker to
another. The Rapid-specific information must be picked from the rest of the
information in the map file.

O P T I M I Z A T I O N

74
Rapid’s Debugger and Logger Tools

The Debugger and Logger tools can be used to obtain a breakdown of the
application’s performance. For detailed information about how to use and
customize the Debugger log, read Chapter 3: “Debugger Log” in the User
Manual Supplement.

When an application runs in the Debugger, each logic operation is logged.
Each log line shows the number of state machine cycles and the time in
milliseconds that elapsed since the application started.

The following illustration shows an example of the Debugger log:

Analysis of the Debugger log can be very helpful in pinpointing performance-
slowing logic.

❖ NOTE: Performance (presented in the Debugger log pane in milliseconds elapsed
since the application started) is machine dependent. Response times will be
shorter on a faster machine and longer on a slower one. Performance in the
embedded system environment may be affected by additional variables and
should be measured with embedded debug features.

M E M O R Y U S A G E D I A G N O S T I C T O O L S

75
The Debugger log can also be used to identify continuous loops. In the
illustration below, the loop consists of the following lines:

The loop lines, as seen in the illustration, may be consecutive or interspersed
by other logic.

A variety of filters can be applied to the Debugger to focus on selected
components and produce a more compact and easier-to-read log. When
analyzing performance, you should also filter out all the internal logic of
embedded interface components, since they will be ignored by the Code
Generator.

Condition internal;& Integer1 <= 5 [true]

Transition myApplic internal [Trigger: internal;& Integer1 <= 5 [true]

Start actions Actions for transition: -----> myApplic

Action Integer1 := 2

O P T I M I Z A T I O N

76
OPTIMIZING RAM

RAM usage is primarily determined by the manipulation of variable data in
the application (application variables and state machine queues). Because
RAM is usually a limited resource, the Rapid application must operate within
the RAM constraints imposed on it by the embedded system. Rapid offers
several options for generating code that uses less RAM. In addition, there are a
variety of RAM-reducing alternatives that can be applied when it is necessary
to lower RAM consumption.

The following sections list various ways of decreasing the application’s RAM
usage. Some of these techniques exploit Rapid built-in mechanisms; others
require manual changes in the application.

Setting Code Generation Preferences to Reduce RAM

Several parameters in the Code Generation Preferences dialog box affect RAM
usage of the generated code:

• Generation of unused elements (Optimizations tab).

• Maximum data object sizes (Data sizes tab).

• Maximum buffer sizes (Buffer sizes tab).

Excluding unused elements

You can reduce the required RAM size by excluding objects that are not used
by the application logic from code generation. To exclude unused elements,
clear the “Generate unused elements” option. Non-generation of unused
objects also reduces ROM usage.

In some situations, you may want to include unused elements in the
generated code. For example, in order to get an idea of the size of the
generated code before you have implemented all mode-related logic.
However, when generating code for the completed application, you should
always verify that the “Generate unused elements” option is not selected.

Setting appropriate data size limits

The sizes of Rapid data objects: string, array, and data store can be limited for
code generation. These sizes will be used by the Code Generator and will
determine the allocation of RAM for the objects.

O P T I M I Z I N G R A M

77
Before generating code, you should verify that data size limits do not exceed
the application’s needs. For example, if in runtime the maximum length of a
string object is 12 bytes, you should set the string size limit to 12. Setting a
higher value is wasteful.

Keeping the default size limits instead of replacing them with limits that fit
the application is a common and expensive oversight. For an example, see the
RAM Size report on p. 89.

Tip for locating default-size objects

You can locate all the default-size objects by searching the Object Data
report for the string: “Default(“ as shown in the following illustration.

In the report window, use Ctrl+F to open the Find/Replace dialog box.

Setting appropriate buffer size limits

The same rules described for data sizes apply to Rapid internal data structures
and temporary working memory. In order to determine their adequate sizes,
run the application on the target platform with a call to the rpd_GetQueueSize
API function.

Use the obtained return values as a basis for determining the optimal internal
queue and temporary memory sizes. For detailed instructions, refer to
“Specifying Buffer Sizes” in Chapter 9 of the Generating Code manual.

O P T I M I Z A T I O N

78
Excluding Non-Referenced Interface Elements

Although objects that are not used in the component’s logic can be
automatically excluded from code generation, interface elements that are not
used in the application must be manually removed. Normally, a component’s
interface is defined before its implementation and, in many cases, is designed
to support future functionalities. At the optimization stage, you should decide
whether to keep or remove unused interface elements. Removal of unused
interface elements improves ROM usage as well.

Generating Rapid Data Objects as Primitives

Integer, number, and string objects can be generated either as primitives or as
Rapid objects. Generation as Rapid objects produces a structure that contains
data required by Rapid for the object manipulation and the object’s value.
Generation as a primitive produces a variable (RLONG for an integer, RFLOAT
for a number, and RCHAR for a string) with its value. Generation of integers,
numbers, and strings as primitives saves both RAM and ROM.

The type of generation is determined by the Code Generator on the basis of
the object’s use in the application. A Rapid integer/number is generated as a
primitive when all the following statements are true:

• It is not used on the right side of an assign (:=) function in mode activities.

• It is not used in user condition functions.

• It is not passed as an argument to a user function that could changes its
value (i.e., passed by address).

• It is not bounded.

To economize resource consumption, avoid using integers, numbers, and
strings in the above listed circumstances, unless necessary. Verify that the
Bounded option (in the More dialog box of an integer and a number) is
selected only when required.

Replacing Interface Messages by Data Containers

❖ NOTE: The following information applies to service and application module
components.

Using messages to interface between components is expensive in RAM usage
because memory for the message is allocated both in the component where
the message is defined and in its parent application. When the send/receive
mechanism of the message is not needed, it is more economical to replace the
message by a data container.

O P T I M I Z I N G R A M

79
Using a data container instead of a message requires an allocation of memory
only in the parent application. However, the addition of another user object
entails the standard RAM overhead required by any component. When the
memory saved by elimination of the dual memory allocation is larger than
the memory expended on the additional component, replace the message
interface by a data container.

For more information about data containers, see “User objects generated as
data containers” on p. 20.

Sharing Data by Using Data Containers

When the same data is shared by several components, it is more economical
to create a data container for the shared data in the parent application than to
define it in each of the components. To make the data in the data container
accessible to other components, you should define an appropriate holder in
each of the respective components. The holder must be initialized by the
parent application.

For more information about holders, see “Using Holders” on p. 61.

Allocating Message Memory by Pointer

Memory for a message is allocated by one of two methods:

• Buffer, whereby Rapid internally allocates each union enough memory to
accommodate its largest structure. This is the default method.

• Pointer, whereby the user object message uses memory that is provided by
the underlying embedded system. For instructions on how to change the
memory allocation method, refer to the section “Adding Unions and
Structures” in Chapter 16: “Adding Messages to a User Object” of the User
Manual Supplement.

Pointer-type messages can be used in order to share memory between Rapid
and the embedded system. In order to avoid data loss when memory is
controlled by the embedded system, message data must be used before a new
message arrives from the embedded system, or copied for later use into a
Rapid-controlled memory area.

If the system allocation policy specifies that freeing the allocated memory is
the responsibility of the message-receiving task, the deactivateAny function
should be called by the Rapid application. The Rapid kernel then calls the
deactivate function for the active structure. In the user code of this function,
the integrator should add a call to a function that frees the allocated memory.

O P T I M I Z A T I O N

80
Using Dynamic Memory Allocation

Rapid supports dynamic memory allocation for user objects. In systems that
support dynamic memory allocation, the entire user object can be created
during runtime. This is achieved by using a holder of the user object’s type
and calling the holder’s holdNew function when an instance of the user object
is required. Rapid then allocates memory for the user object and creates an
instance of it. When dynamic allocation is used, the memory is automatically
released by the Rapid garbage collector as soon as no holder points to the user
object or any of its children.

Replacing Timers by Timer Tick Objects

The timer tick object was designed to save RAM. Like the timer, it generates a
tick event at the end of a specified period, but it does not have the count and
initialCount properties. It therefore consumes less RAM in the generated
application and should replace the standard timer as the default choice for a
timer object. Use of the standard timer object should be reserved to cases
where the counter properties are required, for example, when you need to
show the counted time on a display.

Consolidating Same-Type Data Objects

Each data object requires a certain amount of RAM. Therefore, if there are
multiple same-type data objects in a component, you should try to merge as
many of them as possible into a single object. Instead of using five different
integers, create a single integer and use it repeatedly.

Reducing the Number of Components

For each user object, there is a default RAM overhead of 400 bytes. To save this
overhead, reduce the number of components in the application. For example,
you can replace application modules and services by modes in their parent
applications. This is particularly recommended with components that do not
have a lot of logic. With embedded interface components, consider
combining several components into one.

O P T I M I Z I N G R O M

81
Using Concurrent Mode Status in Conditions

It is more economical to use a mode status flag (mode is active/is inactive) than
a flag based on another variable.

When concurrent modes are used, it is sometimes necessary to check the
status of related modes under a sibling concurrent mode. In some cases, such
a need indicates that the mode tree structure needs to be improved. When
changing the mode tree is not possible, you should use a condition or an
event on the respective mode (mode is active/is inactive or mode entered/mode
exited) rather than a data object flag.

OPTIMIZING ROM

ROM usage is determined by the size of the application’s code (state machine
engine, generated code, and objects) and constant data. When it is necessary
to reduce ROM, you can use the following, Rapid-supported techniques:

• Automatic and manual code CRUNCHing.

• Replacing messages by data containers.

• Using loops to replace repetitive logic statements.

CRUNCHing the Code

The Rapid Code Generator has a built in CRUNCH optimization mechanism
that substitutes functions for logic that is repeated in the application. For
more information, refer to the section on CRUNCH in Chapter 9: “Using the
Code Generator” of the Generating Code manual.

The automatic CRUNCH mechanism can process only logic lines that are
exactly identical. When logic lines are similar but not identical, you can apply
CRUNCH manually. You can define a function, with or without arguments,
and use it instead of repeating sections of code.

Example

The following logic lines:

Integer1 := Integer2 + 5
String1 =: 5

Integer1 := Integer2 + 7
String1 =: 7

O P T I M I Z A T I O N

82
can be manually CRUNCHed as follows:

function: <Integer: x>
{
Integer1 := Integer2 + <x>
String1 := <x>
}

If the number of similar logic lines that the function replaces is very small, the
savings might not seem to be worth the effort, since the defined function also
takes up some storage space. However, using a function instead of repeated,
similar logic lines offers a maintenance advantage and should therefore be
preferred.

Using Data Containers Instead of Messages

The code generated for a data container is smaller than the code generated for
the same data when it is in message format because the code generated for a
data container excludes the send/receive mechanism. The data in a data
container can be used by other components by adding a holder for the data
container in each of these components or by passing the data container user
object as an argument in a function.

For more information about data containers, see “User objects generated as
data containers” on p. 20.

Using Logic Loops

Loops can be used to replace a sequence of repetitive logic lines either as
internal actions or with For/While operators.

Example

Instead of the five entry activity lines:

O P T I M I Z I N G R O M

83
you can use the internal action:

or you can use the For loop:

The replacement of repeated logic lines by a loop reduces ROM usage, but at
the same time increases RAM consumption. The use of internal action loops
may also slow down performance, because the action is performed only once
per state machine cycle. In the above example, it requires five state machine
cycles to complete the internal action.

For/While loops do not have such an adverse effect on performance, and are a
better way to implement loops. However, the Rapid state machine is frozen
during execution of a For/While loop. Therefore, if a long or endless loop
occurs, there is no way to terminate it as the logic will be processed until the
loop is completed. This is not the case with internal action loops, where the
state machine can respond to other inputs in a long loop or even terminate an
endless loop by activating another transition.

TIP: When loop processing is short and cannot noticeably affect the system, a
For/While loop should be used. Whenever the activities performed in the
loop might require a longer time (e.g., reading data from a slow Flash
memory), the internal condition/action should be used.

Limiting Font Generation

When an application does not use all the characters of a font, limit the
generation of the font to the required characters only. For instructions, refer
to the section “Advanced Font Object Settings” in Chapter 10: “Bitmap,
Image, and Font Objects” of the User Manual Supplement.

O P T I M I Z A T I O N

84
OPTIMIZING PERFORMANCE

Performance is mainly affected by the number of state machine cycles
required to perform a given action and the number of operations performed
in every cycle. Performance optimization therefore focuses on ways to reduce
the number and content of state machine cycles and so improve response
time. As a rule, reducing the number of objects, use of primitive rather than
Rapid objects, and use of data containers instead of messages, all speed up the
application’s initialization processes.

Modifying Logic

Using an If...else action

Replace multiple internal actions that are triggered by an event and condition
combination with a single event and an IF...else action.

Example

Replace:

 with:

This replacement reduces the number of triggers to be evaluated by the state
machine when the event occurs.

Using a For/While loop

Replace internal loops by For/While loops which are completed in a single
cycle of the state machine.

O P T I M I Z I N G P E R F O R M A N C E

85
Example

Instead of:

use:

Clearing Holders when not Required

Clearing a holder when the held object is not required, even though its parent
is idle, may improve performance when there are dependencies on the held
object in other components.

Example

A phone book component has a holder for an editor component, which has a
holder for a keypad component. Whenever the keypad component generates
an event or changes a property, Rapid checks whether a response is required
in the editor holder of the phone book component—even if the phone book
component is in idle mode.

This check is very short but, when it happens many times, the accumulated
effect may slow performance. Clearing the editor holder in the phone book
component eliminates the check by deleting the reference to the editor and so
cancelling its keypad dependency.

O P T I M I Z A T I O N

86
Decreasing the Number of State Machine Checks

Replacing an event and property combination by multiple events improves
performance by eliminating state machine checking of the property value. For
example, in a keypad user object, use a separate event for each function key
instead of a general key press event that is accompanied by a keycode
property.

However, for the alphanumeric keys, it is more efficient to use an exported
event and property combination, as we did in the Ref_Design application.

Replacing Synchronous by Asynchronous Function Calls

A function call in the embedded system may take considerably longer than
the simulation of such a call in the Rapid embedded interface component
(UDI). When a synchronic function call is used, Rapid manages the retrieval
of the requested data, and the state machine stands still until this data is
received. When using an asynchronous function, Rapid delegates data
retrieval to another task and is therefore free to continue its processing. The
Rapid task must be notified when the requested data becomes available.

Decreasing Component Nesting

Each transition of information by a property or message from one level of the
nesting hierarchy to the next requires an additional state machine cycle. To
reduce the number of required state machine cycles, keep the number of
nesting levels to a minimum.

Decreasing Event Chaining

When one event generates another, which in turn produces yet another event
and so on, each link in the series of events requires an additional cycle of the
state machine. This is true across components as well as within a single
component. For better performance, you should avoid such event chaining.

Limiting the Number of Consecutive State Machine Cycles

At the end of each cycle, the state machine returns a “More To Do” value. For
detailed information, refer to the section “The State Machine and the ‘More
To Do’ Return Value” in Chapter 4: “The Application Programming Interface
(API)” of the Generating Code manual.

Typically, the state machine needs about five cycles to return a zero “More To
Do” value. When a much larger number of cycles is required to return a zero,

O P T I M I Z I N G P E R F O R M A N C E

87
this indicates a problem in the application and should be investigated during
the integration phase.

As long as the “More To Do” value is not zero, the state machine will continue
to demand CPU resources. It is the responsibility of the system integrator to
call the runRapidCycles function according to task priority and CPU
availability. In that function, the maxCycles parameter is used to limit the
number of consecutive state machine cycles.

The following excerpt shows the relevant code excerpt from the file App_Api.c:

/*==\
| Function: runRapidCycles |
| Running Rapid state machine cycles to get to the next state |
| Reacting to all the external inputs and performing all the |
| entailed activities |
| Including the internal events generated by the state machine |
| during the state change |

\==/
int runRapidCycles(int maxCycles)
{

int rpd_moreToDo, i=0;
do{

rpd_moreToDo = rpd_PrivRunIdle();
}while(rpd_moreToDo && i++<maxCycles);
return rpd_moreToDo;

}

The system integrator should set the value of maxCycles to ensure proper
operation of Rapid within the smallest possible number of consecutive state
machine cycles. For example, in an application that uses an internal event to
display a 10-item list, setting the maxCycle value to 8 will result in a display
of the first eight items only. In order to display the last two items, you
should call runRapidCycles when the timer update function is called
(rpd_PrivUpdateTimer).

O P T I M I Z A T I O N

88
 OPTIMIZATION CASE STUDY

Below is a detailed account of the optimization of an earlier version of the
Ref_Design application, which was developed without paying much attention
to resource consumption.

The optimization started with an analysis of Rapid’s summary RAM Size
report, which was imported into Microsoft® Excel and sorted by descending
total size.

One glance at this report was enough to show the four components
responsible for almost all of the RAM the application required.

O P T I M I Z A T I O N C A S E S T U D Y

89
The next step was to obtain detailed RAM Size reports for these four
components. The detailed report for CALLHMI shows that four string objects
account for almost all the RAM this component requires.

In addition, these four strings share almost the same size, which suggests a
common default setting. And indeed, this is the Rapid default string size for
code generation (Code Generation Preferences dialog box, Data sizes tab).
Changing the size of each of these strings to 32 bytes reduced the size of the
component by almost 131,000 bytes.

O P T I M I Z A T I O N

90
We next analyzed the myApp component which is called MAINAPP in the
detailed report. Because of the large number of objects in this component, we
again imported the report into Microsoft® Excel and sorted it by descending
object size.

The following illustration is the top part of the sorted detailed report for
MAINAPP.

A quick look at the report showed that two objects required most of the RAM,
both of them dynamic buffer objects. One was the dynamic buffer of the
menu application module (DB_R6588_MENUHMI1). The fact that this buffer
is allocated in the main application and not in the MENUHMI component
indicates that it is allocated for an interface element and not for an internal
object.

O P T I M I Z A T I O N C A S E S T U D Y

91
The size of the buffer is close enough to the default size of strings to suggest a
default-size string property on the interface of MENUHMI. Opening the
interface of MENUHMI revealed the default-size string property editText, as
shown in the following illustration.

:

Further analysis showed that the editText string property was not used in the
application. The editText property was therefore removed from the interface of
MENUHMI, thereby cancelling the dynamic buffer allocation in the main
application.

The memory size of the GDO’s dynamic buffer is affected by its size and the
GDO’s number of colors (bpp). Since both parameters usually reflect the
features of the hardware, there is not a lot of room for maneuvering here.
However, if you know that the application uses a smaller palette than defined
for the GDO, you may consider changing the number of colors in the object’s
definition. In Ref_Design we decided to change the graphic display’s colors
from 256 to 16.

A 0 value in the
Maximum string length
box indicates the default
size

O P T I M I Z A T I O N

92
Techniques Applied to Reduce RAM Size

After reducing the sizes of the major RAM-consuming components, we
applied additional RAM-saving techniques:

• Adjusting object sizes to reflect application needs.

• Combining several instances of a component into one.

• Replacing all timer objects by timer tick objects.

• Removing non-essential buffers.

• Replacing components with very little logic by main application modes.

In comparison with the previous savings, the contribution of the last four
techniques was relatively minor, yet it is not to be slighted.

Adjusting object sizes to reflect application needs

Using the RAM Size report, all large-sized arrays and strings were examined
against the actual requirements of the application. In all cases where the
actual sizes required by the application were smaller than the sizes defined for
the objects, the objects were resized.

Combining several instances of a component into one

A closer look at the summary report reveals the presence of three instances of
the ANIMATOR component.

Originally the arrays of animation bitmaps resided in three different
components. The ANIMATOR component has an exported start function
which uses the animation bitmap array as an argument. At present (to be
improved in the next version of Rapid), an array argument can be used from
the parent application but not from sibling components. Therefore, each of
the three components with the animation bitmap arrays had to have its own
child ANIMATOR.

In order to combine the three ANIMATOR instances into a single one, the
animation bitmap arrays were moved from their original components into the
ANIMATOR component. It then became possible to replace the array
argument in the ANIMATOR’s start function by an index to the respective
array. A single ANIMATOR component could now handle all the animation
needs of the application.

O P T I M I Z A T I O N C A S E S T U D Y

93
Replacing all timer objects with timer tick objects

After verifying that none of the application’s timer objects used the count or
initialCount properties, all timer objects were replaced by the leaner timer tick
objects.

Removing non-essential buffers

Two application components were defined with their own buffers: EDIT_BOX
and RLIST. Both of these buffers were eliminated and the logic accordingly
adjusted by drawing directly on the GDO.

Replacing components by main application modes

The components READY, STARTUP, and BACKLITE were eliminated and
replaced by modes in the main application. These components were selected
because they had only the most basic logic and were created mainly to keep
the main application’s mode tree uncluttered.

Techniques Applied to Reduce ROM Size

We applied two ROM-reducing techniques:

• Limiting font generation to required characters.

• Cropping bitmaps.

Limiting font generation to required characters

Basically, the use of the font in the application is limited to the characters
available on the phone’s keypad. Characters that are not used in the
application were excluded from generation.

Cropping bitmaps

The backgrounds of the bitmaps in the ANIMATOR component were cropped
to reduce their ROM requirements. Note that the manipulation of bitmap
sizes required an adjustment of their positioning on the display.

O P T I M I Z A T I O N

94
Case Study Optimization Summary

The following tables summarize the RAM and ROM savings achieved by the
optimizations performed in the case study:

O P T I M I Z A T I O N D E S C R I P T I O N B E F O R E A F T E R
S A V E D

R A M

Replacing default sizes in strings 304 KB 173 KB 131 KB

Removing unused default-size string
interface element

173 KB 141 KB 32 KB

Reducing GDO colors from 256 to 16 141 KB 125 KB 16 KB

Adjusting object sizes to reflect
application needs

125 KB 41 KB 84 KB

Combining several instances of
ANIMATOR into one

41 KB 40 KB 1 KB

Replacing timer objects with timer
tick objects

40 KB 39 KB 1 KB

Removing non-essential buffers 39 KB 28 KB 11 KB

Replacing components by modes 28 KB 27 KB 1 KB

 Total 277 KB

O P T I M I Z A T I O N D E S C R I P T I O N B E F O R E A F T E R
S A V E D

R O M

Limiting font generation to required
characters

260 KB 243 KB 17 KB

Cropping bitmaps 243 KB 193 KB 50 KB

 Total 67 KB

95
A P P E N D I X D

Memory
Consumption
All sizes shown in the table are in bytes and relate to elements compiled for
the 32-bit ARM compiler.

E L E M E N T R A M R O M

R A P I D C O D E D A T A

Baseline application (no
objects or logic)

660

The absolute ROM sizes are
compiler- and CPU-dependent.

Baseline application with one
user object, where the user
object has no objects, logic,
or interface

896

Baseline application with one
user object generated as
interface only (no interface)

692

Rapid integer 20 per object 44 per object 40 per object

Primitive integer 4 per object 12 per object 4 per object

Integer array 72 per array + 4
per element

48 per array 64 per array

Message1 (buffer) with integer
fields

20 per message
+ 4 per field

56 per message 12 per message

Message (pointer) with
integer fields

20 per message
+ 0 per field

~325 per message 12 per message

M E M O R Y C O N S U M P T I O N

96
Integer property on user
object generated as full object

28 for the first
property
24 for each
subsequent
property

~40 per property 28 per property

Integer property on user
object generated as interface
only

Same as above ~55 per property 28 per property

Event property on user object
generated as full object

0 per property 0 0

Event property on user object
generated as interface only

Same as above 0 0

Rapid number 20 per object 44 per object 40 per object

Rapid string 28 per object +
1 per character

68 per object 40 per object

Primitive string 1 per character 34 per object 12 per object

Event object 28 per object 40 per object 20 per object

First timer object2 100
36 per object 52 per object

Subsequent timer objects 116 per object

First timer tick object2 56
28 per object 24 per object

Subsequent timer objects 72 per object

Mode 2 per mode 0 ~16 per mode

Transition 0 0 0 for the first
transition, 4
for each
subsequent
transition

1. A message = a union with one structure.
2. The RAM for the first object is somewhat less because it uses an already existing (but empty) first

entry in the required table.

E L E M E N T R A M R O M

R A P I D C O D E D A T A

	Contents
	About the Methodology Guide
	Typographic Conventions Used in this Guide
	User Assistance from e-SIM

	Methodology Overview
	The Rapid Development Methodology
	Stage 1: Requirements Specification
	Stage 2: Architecture Design
	1. Identifying project components
	2. Classifying project components
	3. Defining component functionality and interface
	4. Reviewing the design

	Stage 3: Implementation
	Stage 4: Integration and On-Going Optimization
	Stage 5: Final Optimization
	Stage 6: Acceptance Testing

	Requirements Specification
	Ref_Design Requirements Specification
	MMI Feature Requirements
	Call management
	Phone book management
	Menus for user settings and functions
	Editing numbers and names
	Language support
	Animation capabilities
	Icon Management
	Display
	Alphanumeric Keys
	Function Keys
	Backlight

	Architecture Design
	Architecture Design Methodology
	Code Generation Considerations
	Types of Code Generation
	User objects generated as full objects (*.udo)
	User objects generated as interface only
	User objects generated as data containers
	User objects generated as empty tasks

	Interface of User Objects
	Exported properties
	Exported events
	Messages
	Exported functions

	Implementing Interface in Generated Code
	Code Generation Process

	Identifying Components
	How many components to use?
	Embedded Interface Components
	Service Components
	Reasons for creating service components

	Continuous vs. On-Demand Services
	Continuous services
	On-Demand Services

	Application Modules
	Using Holders to Share Components
	Creating the Main Application

	Component Functionality
	Component Interface
	Interface with the Embedded System
	Exported properties
	Exported events
	Messages
	Data containers

	Interface Among Full User Objects
	Exported properties
	Exported events
	Messages

	Component Interface Examples
	Application modules
	Service components

	Rapid and System Architecture
	Task Architecture
	Inter-Task Communication and Memory Allocation
	Memory allocation for interface messages
	Message allocate/free policy

	Rapid Task Priority
	Starvation of the System
	UI Required in Different Tasks
	Code generation of an “Empty task”

	Timer Integration

	Design Review

	Implementation
	Setting implementation priorities
	Implementing Components
	Component Implementation Procedure
	Implementing Embedded Interface Components
	Implementing Services
	Implementing the Graphic Display Object
	Number and size of buffers
	Update method

	Using Holders

	Implementation Tips
	Verification Test
	Code Generation Messages
	Modes vs. Conditions
	Managing Priorities
	Streamlining Processes
	Avoiding Processor-Intensive Logic
	Blocking Operations and Loops
	Objects
	Simulation-only objects
	Object “weight” in the generated code

	Optimization
	Memory Usage Diagnostic Tools
	Rapid’s Object Data Report
	The Rapid RAM Size Report Utility
	The Linker’s Map File
	Rapid’s Debugger and Logger Tools

	Optimizing RAM
	Setting Code Generation Preferences to Reduce RAM
	Excluding unused elements
	Setting appropriate data size limits
	Setting appropriate buffer size limits

	Excluding Non-Referenced Interface Elements
	Generating Rapid Data Objects as Primitives
	Replacing Interface Messages by Data Containers
	Sharing Data by Using Data Containers
	Allocating Message Memory by Pointer
	Using Dynamic Memory Allocation
	Replacing Timers by Timer Tick Objects
	Consolidating Same-Type Data Objects
	Reducing the Number of Components
	Using Concurrent Mode Status in Conditions

	Optimizing ROM
	CRUNCHing the Code
	Using Data Containers Instead of Messages
	Using Logic Loops
	Limiting Font Generation

	Optimizing Performance
	Modifying Logic
	Using an If...else action
	Using a For/While loop

	Clearing Holders when not Required
	Decreasing the Number of State Machine Checks
	Replacing Synchronous by Asynchronous Function Calls
	Decreasing Component Nesting
	Decreasing Event Chaining
	Limiting the Number of Consecutive State Machine Cycles

	Optimization Case Study
	Techniques Applied to Reduce RAM Size
	Adjusting object sizes to reflect application needs
	Combining several instances of a component into one
	Replacing all timer objects with timer tick objects
	Removing non-essential buffers
	Replacing components by main application modes

	Techniques Applied to Reduce ROM Size
	Limiting font generation to required characters
	Cropping bitmaps

	Case Study Optimization Summary

	Memory Consumption

