
Generating
Web Simulations

Generating Web Simulations

© 2003 e-SIM Ltd. All rights reserved.

e-SIM Ltd.
POB 45002
Jerusalem
91450
Israel

Tel: 972-2-5870770
Fax: 972-2-5870773

Information in this manual is subject to change without notice and does not represent a commitment
on the part of the vendor. The software described in this manual is furnished under a license agreement
and may be used or copied only in accordance with the terms of that agreement. No part of this
manual may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose without the express written permission of
e-SIM Ltd.

Microsoft, Windows, Windows NT, and Internet Explorer are registered trademarks of Microsoft
Corporation in the U.S. and other countries.

Macintosh is a registered trademark of Apple Computer, Inc., registered in the U.S. and other countries.

Netscape Navigator is a registered trademark of Netscape Communications Corporation in the U.S. and
other countries.

Java and the Java logo are trademarks or registered trademarks of Sun Microsystems, Inc., in the U.S.
and other countries.

Macromedia and Flash are trademarks or registered trademarks of Macromedia, Inc. in the United
States and/or other countries.
Written and produced by e-SIM Ltd.
Printed in Israel.

MAN-GenWeb-7.2

iii
Contents
About the Generating Web Simulations Manual . vii

Document Conventions . viii

C H A P T E R 1 : I N T R O D U C I N G R A P I D P L U S W E B S T U D I O 1

The Java Environment . 2

Rapid–Generated Applets . 2

Applets for Product Simulations . 2

Applets for Multimedia Presentations . 3

Workflow for Developing Multimedia Presentations . 4

Simulations and Simulation Packages . 6

Choosing a Simulation Type . 6

Choosing a Simulation Package . 7

Planning for the Java Runtime Environment . 9

Controlling Download Time . 9

Planning for Behavioral Differences .10

C H A P T E R 2 : A P P L I C A T I O N D E S I G N G U I D E L I N E S 11

Code Generation Inputs and Outputs .12

Naming Applications and Resources .12

Choosing Rapid Objects .13

Generated and Nongenerated Elements . .13

Choosing from Similar Objects . .17

Referencing Files . .18

Data Store Files (.rds) and Array Files (.rar) .18

Audio Files (.wav) .18

C O N T E N T S

iv
Image Files . 18

JavaBean Resources . 19

Working with Graphic Files. 19

Choosing Formats for Application Graphics . 19

Recommendations . 20

Working with Audio Files . 22

Using .wav Audio Files . 23

Adding Wave Audio Objects . 23

Adding Logic for Wave Audio Objects . 24

Substituting Flash Audio Files . 24

Using Native and Nonnative Fonts . 26

Native Fonts . 26

Nonnative Fonts . 28

Font Recommendations. 28

Optimizing Rapid Logic . 29

Planning for Scenarios . 29

Download Time . 29

Determining the Scope of Simulation Functionality. 30

Determining Default Settings . 30

Referencing Objects During Runtime. 30

Adding Supplementary Devices . 31

Including Special Images or Audio Files . 31

Activating the Mouse Object . 31

Updating the Simulation . 32

Anticipating Differences in Environments . 32

C H A P T E R 3 : G E N E R A T I N G C O D E A N D T H E S I M U L A T I O N 43

Setting Configuration Options . 44

Updating the JDK File Path . 51

Generating Java Code from Rapid Code . 52

Setting Code Generation Preferences . 52

Running the Code Generator . 53

Status Line Messages. 55

The Code Generation Process . 55

C O N T E N T S

v

Optimizing Image Download .57

Image Download Categories. .57

Changing the Download Category . .58

Splitting Large Files .59

Making Simulations Without Regenerating Code .62

Running the Make Process . .62

Running the Link Process .62

C H A P T E R 4 : F I N A L I Z I N G S I M U L A T I O N S F O R D I S T R I B U T I O N 63

Running Generated Simulations .64

Testing Functionality of Stand-Alone Simulations .64

Viewing Simulation Applets in a Web Browser .66

Adjusting Simulation Download .68

Changing the Download Rate. .68

Customizing What the User Sees During Download .68

Distributing Simulations (Publishing) .69

Distributing Simulations to Web Designers. .69

Distributing Simulations to Scenario Authors .69

Creating CD-ROMs for Macintosh Computers . .70

C H A P T E R 5 : D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T 71

Building the Scenario Player Application .73

Scenario Player Building Blocks . .73

Scenario Player Usage Examples .74

Generating Code to Create the Scenario Player Applet .78

The User Objects’ API .79

ScenarioPlayer_Manager.udo Reference . .79

ScenarioPlayerUI_Agent.udo Reference .86

AppletContext_Manager.udo Reference . .90

Simulation_Agent.udo Reference . .93

Working with Indicators and Demonstrators . .95

Making Global or Local Changes . .95

Modifying Indicators . .96

Modifying Demonstrators . .98

C O N T E N T S

vi
A P P E N D I X A : C O D E G E N E R A T I O N O U T P U T . .101

Updated Simulation and Scenario Parameters . .102

Code Generation Output Files in the Root Folder .103

Generated Subfolders .103

<MyApp> Folder .104

Build Folder . .104

CdPack Folder .104

Classes Folder . .104

Localres Folder .104

ScenPack Folder .105

SitePack Folder .105

StandAlone Folder . .106

HTML Files . .106

A P P E N D I X B : E R R O R S , W A R N I N G S A N D M E S S A G E S 109

Errors (E) .110

Warnings (W) . .112

Informational Messages (I) .114

A P P E N D I X C : J A V A S C R I P T U S E R I N T E R F A C E F O R S C E N A R I O S115

Scenario Player Applet Functions .117

The JavaScript Utilities Library . .119

The Rapid Application Library .123

I N D E X .125

A B O U T T H E G E N E R A T I N G W E B S I M U L A T I O N S M A N U A L

vii
ABOUT THE GENERATING WEB SIMULATIONS
MANUAL

This manual is both a methodology guide and reference resource. As a
methodology guide, it presents instructions and guidelines for developing
RapidPLUS Web Studio applications that will be optimized for Java code
generation. As a reference guide, it delineates code generation processes and
output so that you will have a clear understanding of what is involved in
producing simulation applets.

This manual is for the team using RapidPLUS Web Studio to develop
simulations for viewing and manipulating in a Web browser. Simulations are
developed in the Rapid environment, generated as Java code, then integrated
into a Web site. The skills required by the design/implementation team vary,
depending on the amount of customization you require:

• Rapid application development—for implementing applications in
RapidPLUS Web Studio.

• Web design—for manipulating Web graphics and the default HTML, XML,
and JavaScript files.

• Graphic design—for developing the graphics that will appear in
simulations and Web browsers.

The size and composition of the team will vary from organization to
organization and from project to project; however, in all cases the team
members need to share a common conceptual model of how a Rapid
application for Java code generation evolves from an idea to a functional,
interactive simulation that can be viewed in a Web browser by people with
different computer skill levels.

This manual comprises the following chapters:

• Chapter 1: “Introducing RapidPLUS Web Studio” introduces the concepts,
environment, and components for developing, generating, and
distributing Web simulations.

• Chapter 2: “Application Design Guidelines” presents the issues to consider
when building a Rapid application that will be generated into a Java-code
simulation applet.

• Chapter 3: “Generating Code and the Simulation” presents instructions
for generating Java code, a descriptions of the code generation process,
and guidelines for optimizing the simulation applet’s performance.

viii
• Chapter 4: “Finalizing Simulations for Distribution” presents instructions
and suggestions for running and testing simulation applets, and for
distributing and publishing simulations.

• Chapter 5: “Developing the Scenario Player Applet” presents instructions
and guidelines for building a Rapid application that will be generated as a
Scenario Player applet.

• Appendix A: “Code Generation Output” describes the generated folders
and files.

• Appendix B: “Errors, Warnings and Messages” describes the errors,
warnings, and informational messages that may appear during code
generation.

• Appendix C: “JavaScript User Interface for Scenarios” describes the
Scenario Player applet functions that are accessible to JavaScript and utility
libraries for use with JavaScript functions.

Document Conventions

This manual uses the following conventions:

Menu Conventions

• “Choose File|Save” means to select the Save command from the File menu.

Typographic Conventions

• HTML, Java, and JavaScript code appear in monospaced characters:
rapid_applet, FRAMESET

• File names and extensions appear in italic characters:
make.bat file, .html files

• Names of Rapid properties, functions, and events appear in italic
characters:
cursorExited event, changeBy: function

• Complete phrases of Rapid logic appear in bold, sans serif characters:
Lamp1 enable, Integer1 changeBy: 5

� • An arrow icon in the margin indicates a recommendation for Rapid
application development.

1

C H A P T E R 1

Introducing
RapidPLUS
Web Studio

RapidPLUS Web Studio is a comprehensive software package for building
prototype applications of consumer electronics. These applications can be
generated as Java™ code to produce functional, interactive simulations that
can be viewed in a Web browser.

The Java simulations can be distributed via Web, intranet, kiosk, and
CD-ROM. They can be used on their own, or as part of multimedia
presentations that target key product features and functions.

The entire RapidPLUS complement of tools is available for you—the Rapid
simulation developer—to create and test simulations as virtual product
prototypes. As a prototype becomes an actual product, you can refine your
Rapid application and generate a Java simulation. With Java technology, your
simulations are portable and can be easily accessed by others, making them
ideal solutions for training, marketing, and customer support.

This overview presents:

• An introduction to the Java environment.

• The stages involved in creating a Java simulation and a multimedia
presentation.

• Ways to use simulation applets.

• Choices for generating simulations and distribution packages.

• Considerations for the Java runtime environment.

I N T R O D U C I N G R A P I D P L U S W E B S T U D I O

2

THE JAVA ENVIRONMENT

The Java programming language gives you the ability to:

• Build simulations on one platform and run them on multiple platforms.

• Create simulations for the World Wide Web.

With RapidPLUS Web Studio, you have the tools to generate applets from
Rapid applications. An applet is a Java language program that can be viewed
and run through most Java-enabled Web browsers. Applets are relatively small
in size and can stream data, making them ideal for viewing via the Web.

You don't need to know Java programming to produce applets in Rapid—the
Rapid code generation process translates Rapid code to Java code, compiles
applets, and creates distribution packages with all the files you need to put
simulations on the Web.

RAPID–GENERATED APPLETS

Two types of applets are generated in Rapid:

• Simulation applets, which are used to simulate product appearance and
functionality.

• Scenario Player applets, which are combined with simulation applets to
create multimedia presentations about the product.

Applets for Product Simulations

A simulation applet, a Java language program generated from a Rapid
application, is a virtual presentation of a product that is viewed in a Web
browser. Users who view and run simulation applets (referred to as
“simulation users”) are able to “experience” the product, either through
manipulating the product themselves (in free-play) or by viewing the product
as part of a multimedia presentation (prerecorded sequences that illustrate
specific product features).

A simulation applet can be manipulated, almost like the real product; the
interactive pushbuttons, dials, switches, and displays appear and respond the
same as on the product. Simulation users can see how the product operates,
gaining more than just a “feel” for what to expect from the product.

R A P I D – G E N E R A T E D A P P L E T S

3

Besides the product, simulation applets typically include icons to change
views or icons that represent additional devices. These additional devices may
be necessary to fully simulate your product’s capabilities. For example, a
telephone needs to simulate responses to incoming and outgoing calls,
an MP3 player needs a computer from which to download songs, and an
audio/video receiver needs input and output devices.

The extent of a simulation applet’s functionality mostly depends on the size
of its files (an important concern for the Web) and/or your own time
constraints.

Simulation applets can be used in multimedia presentations by combining
them with scenarios. Scenarios are described in the following section.

Applets for Multimedia Presentations

Companies can showcase their products by pairing simulation applets
with scenarios. A scenario (also called a guided tour) is a multimedia
demonstration that manipulates a simulation applet to:

• Showcase a product’s features.

• Teach specific tasks.

Scenarios are created for a variety of uses, such as marketing, customer
support, and training. Scenarios can present general features of a product,
or they can present procedures for using the product.

The scenario combines prerecorded actions on the simulation applet (such as
button presses and changing views) with text and sound. Visual aids that
point out areas of interest on the simulation applet can also be added.

In the Web browser, scenarios run in
the Scenario Player applet, a Java-
language program that is generated
from a specialized Rapid
application. The Scenario Player
applet communicates with the Web
browser and the simulation applet
(as illustrated to the right) via Java
and JavaScript functions.

Scenarios are created in a separate
application program called the Scenario Authoring Tool (SAT). For more
information about scenarios, refer to the Using the Scenario Authoring Tool
manual.

WEB BROWSER

Scenario
Player applet

Simulation
applet

I N T R O D U C I N G R A P I D P L U S W E B S T U D I O

4

Workflow for Developing Multimedia Presentations

The following illustration presents the main phases in combining simulation
applets with scenarios for presentation on a Web site:

As you can infer from the illustration, the development of multimedia
presentations requires coordination between you (the Rapid application

1. Start with your
product.

3. Build scenarios in the Scenario
Authoring Tool.

2. Create a Rapid application, then
generate a simulation applet.

4. Combine simulation applet,
Scenario Player applet, and scenarios
to create multimedia presentations.

R A P I D – G E N E R A T E D A P P L E T S

5

developer) and the scenario author. The simulation applet is the basis for the
scenarios; its functionality determines the scope of each scenario. However,
scenario requirements can direct and focus the functionality requirements for
the simulation applet.

For every product, a simulation applet and a set of scenarios are developed.
For every Web site or for a suite of products, a Scenario Player applet and
several display files are developed.

The following illustration presents the typical workflow for developing
multimedia presentations:

Scenarios
Build scenarios in the
Scenario Authoring Tool.

Link scenarios to the
Scenario Player applet.

Publishing

Prepare scenarios and applets
for distribution.

Simulation
Build the simulation in
RapidPLUS Web Studio.

Generate simulation applet.

Scenario Player
Build Scenario Player application
in RapidPLUS Web Studio.

Web Look and Feel

Modify display files.

Generate Scenario Player applet.

For every product: For every site or
suite of products:

I N T R O D U C I N G R A P I D P L U S W E B S T U D I O

6

SIMULATIONS AND SIMULATION PACKAGES

Each simulation applet is generated to a simulation package, a folder with
subfolders and files that comprise all the images and resources necessary for
specific users or environments. This section describes the types of simulations
and simulation packages that you can generate for free-play simulations or for
scenario development.

For details on how to generate the required simulation type and package, see
“Setting Configuration Options” on p. 44.

Choosing a Simulation Type

You can generate a Rapid application to two kinds of simulations: a stand-
alone simulation and a simulation applet. Different tools are required to
compile and view each kind of simulation. (For details about the required
tools, refer to the Readme file, Readme.wri, in the Rapidx folder). Among the
major differences between simulations are portability and file compression.

Stand-Alone Simulation

A stand-alone simulation runs in a stand-alone Prototyper window (i.e., a
window that opens outside the Rapid environment). Stand-alone simulations
are intended for the Rapid application developer to test simulation
functionality quickly, without generating a simulation applet. It uses
resources from the \\Rapidx\Java folder on the developer’s computer.

• Required tool for compilation: JDK 1.3.

• Viewer: Stand-alone Prototyper.

• Portability: Runs only on a computer with RapidPLUS Web Studio
installed (requires the \\Rapidx\Java folder).

• File compression: None.

❖ NOTE: The stand-alone Prototyper contains menu options for recording user
actions (such as button presses or cursor events) in an XML document called
<MyApp>_UDC_<MyApp>_recording.txt. This document is used for building
simple scenarios without the Scenario Authoring Tool.

S I M U L A T I O N S A N D S I M U L A T I O N P A C K A G E S

7

Simulation Applet

A simulation applet runs in the Java applet viewer and in Web browsers. The
initial download of .jar or .cab files—the main body of the simulation—uses
standard Web browser progress indicators.

• Required tools for compilation: JDK 1.3 and DashO-Pro.

• Viewers: Web browsers and Java applet viewer.

• Portability: Can be placed on a CD-ROM, on other computers, and on a
Web server.

• File compression: Loaded files are optimized for size; Internet Explorer
uses the .cab format, Netscape uses the .jar format (about 70% larger than
the .cab format).

• What the simulation user sees during simulation download: While the
.cab or .jar file loads, an animation appears in the browser window. (To
change the animation, see “Customizing What the User Sees During
Download” on p. 68.) Following the animation, a progress bar appears in
the browser window while images load.

Choosing a Simulation Package

RapidPLUS Web Studio code generation produces simulation packages that
comprise folders and files for different users and environments. You can
generate a simulation package for use with the Scenario Authoring Tool, or
you can generate simulation-only packages.

Scenario Authoring Package

Scenario authoring packages use simulation applets. The ScenPack subfolder
in the code generation output folder contains all the files necessary for
creating scenarios, for Web design modifications, and for distributing the
scenario and simulation. The ScenPack folder includes:

• Simulation applet files.

• Scenario Player applet files.

• Utility file for linking scenarios to the Scenario Player and simulation
applets.

• The complete site package folder, containing everything necessary for
uploading to a Web server.

I N T R O D U C I N G R A P I D P L U S W E B S T U D I O

8

The ScenPack folder can be sent to the scenario author who creates scenarios
and links them to the simulation. A Web designer can modify the Web page
that holds the applets, and can upload the site package folder to a Web server.

Simulation-Only Packages

Simulation-only packages can be either stand-alone simulations or simulation
applets.

Stand-Alone Simulation

A stand-alone simulation is generated in the StandAlone subfolder of the code
generation output folder. Because this type of simulation is for testing during
application development, it can only be viewed on a computer with the full
RapidPLUS Web Studio installation.

Simulation-Only Applet

A simulation-only applet is generated in the SitePack subfolder of the code
generation output folder. The simulation applet is called by the generated
demo_sim.html file in the SitePack folder. The Web designer can modify and
incorporate the simulation into a Web page.

Front End Processor CD Package

The Front End Processor (FEP) is an external object that can be added to a
RapidPLUS Web Studio application; it enables users to enter Japanese text
through a keyboard or keypad. Java code generation supports FEP use in
browsers only when the simulation applet runs from a hard disk or a CD-ROM
(not over the Internet). An FEP CD package is generated to the CdPack
subfolder of the code generation output folder. It contains the files necessary
to install and uninstall FEP browser support on the simulation user’s machine.

P L A N N I N G F O R T H E J A V A R U N T I M E E N V I R O N M E N T

9

PLANNING FOR THE JAVA RUNTIME
ENVIRONMENT

When you plan a Rapid application for the Java runtime and Web
environments, keep in mind that download time is a significant factor. After
simulation users click a link to your simulation, it is important for them to see
and use the simulation as soon as possible.

Below are general guidelines to consider when building your Rapid
application. Chapter 2: “Application Design Guidelines” presents more
specific details.

Controlling Download Time

You can control three factors that affect the download time:

• The number of files.

• The size of each file.

• The order in which files download.

The code generation process automatically optimizes files by removing
unused code, combining small files into one, and dispersing files for
download.

Conscientious planning while developing a Rapid application can lead to
optimized simulations, especially with regard to the number of files and their
size. Outside of the Rapid environment, you can adjust the sequence in which
files download.

To promote simulation optimization, you should limit:

• Excess or redundant Rapid objects and logic.

• The number and size of image files.

• The number of color palettes.

• The number of user objects (.udo).

• The simulation file size (recommended under 500 KB).

I N T R O D U C I N G R A P I D P L U S W E B S T U D I O

10
Planning for Behavioral Differences

You should anticipate differences between the computer’s operating system
and the Java virtual machine that can result in behavioral differences. These
differences are explained in detail in “Anticipating Differences in
Environments” on p. 32.

11
C H A P T E R 2

Application Design
Guidelines

With RapidPLUS Web Studio, you—the application developer—can generate a
functional simulation applet without knowing the Java programming
language. However, the Rapid application should anticipate the Java
environment as much as possible.

This chapter discusses design issues that you should consider when building a
Rapid application for Java code generation.

This chapter presents guidelines for:

• Naming Rapid applications to avoid conflicts during code generation.

• Choosing objects for optimal simulation size and functionality.

• Referencing external files such as data store files, array files, audio files,
and JavaBeans.

• Using graphics and sound files to enrich the look and feel of the
simulation.

• Choosing fonts.

• Optimizing logic for smaller simulation size.

• Anticipating behavioral differences between the Rapid and Java
environments.

A P P L I C A T I O N D E S I G N G U I D E L I N E S

12
CODE GENERATION INPUTS AND OUTPUTS

Before you design a Rapid application for generation to a simulation applet,
you should be aware of the inputs and outputs involved. The illustration
below presents the main file types:

These inputs and outputs are described in detail throughout this manual. In
addition, the code generation output is summarized in Appendix A: “Code
Generation Output.”

NAMING APPLICATIONS AND RESOURCES

You can avoid conflicts when compiling simulation applets by following these
rules when naming your Rapid applications and resources:

• Do not give user objects or the parent application the same name as
reserved Java names (e.g., int, float double, public).

Image Files
(.jpeg and

embedded images)

Web Files
(.html, .js)

Resource Files
(.wav, .rar,
.rds, .swf)

Code
Generation

User Objects
(.udo)

Application File
(.rpd)

Utility Files
(.bat, .txt)

Template and
Utility Files
(.html, .js, .bat)

Simulation Applet

Resource Files
(.wav, .txt, .swf)

Archive Files
(.jar, .cab)

Image Files
(.jpeg, .gif)

Font Files
(.rtf, .gif)

❖ NOTE: Code generation also
produces the Scenario Player
applet. For details about the
Scenario Player applet, see p. 71.

C H O O S I N G R A P I D O B J E C T S

13
• Do not give user objects or the parent application the same name as
folders created by the code generation process (e.g., resources, images,
SitePack).

• Do not give a user object the same name as the parent application.
Otherwise, the files generated for the Rapid application (.rpd) will
overwrite the files generated for the user object (.udo).

• Do not use spaces in folder names for the Rapid application or the Java
code generation output. For example, use “MyApp_java” instead of
“MyApp java” for the name of the Java code generation output folder. This
rule applies to the entire path of Rapid applications and simulation
applets, as well as referenced folders and files.

• Use Latin-only characters to name applications and user objects.

• Use Latin-only characters to name objects in Rapid. (Certain non-Latin
characters may generate an error in the Java compiler or DashO-Pro.)

• Enter folder and file names for applications, user objects, and referenced
files accurately, including attention to case sensitivity. This is because the
simulations may run from a case-sensitive platform (e.g., UNIX).

❖ CAUTION: Not conforming to these rules may produce errors during code
generation, compilation, or runtime.

CHOOSING RAPID OBJECTS

Most Rapid objects are supported for Java code generation and are fully
functional. When faced with a variety of similar objects, it is important to
choose objects that fulfill application requirements, yet do not unnecessarily
weigh down the simulation.

Generated and Nongenerated Elements

Most Rapid objects can be generated as Java code; however, some of these
objects have functions and options that cannot be generated. Listed below are
the objects that can be generated and the functions and options that cannot
be generated. Following the lists are additional requirements and restrictions
for the generated objects.

During the Java code generation process, any logic lines that include
nongenerated objects or nongenerated functions are ignored and appropriate
warnings are displayed in the Code Generation Status dialog box.

A P P L I C A T I O N D E S I G N G U I D E L I N E S

14
List of Generated Objects

This is an inclusive list of objects that can be generated for simulation applets.

• Primitive objects: all types of frame, circle, and line objects, and horizontal
label objects.

• Bitmap and image objects.

• Data objects: all types.

• Constant objects: all types.

• Time objects: all types.

• Signal objects: event and sound objects.

• Display objects: font, graphic display, text display, and touch screen
objects.

• Lamp objects: both types.

• Indicator objects: round and square dials, vertical and horizontal linear
indicators, vertical and horizontal bar indicators, barrel and sector dial
objects.

• Indicator objects: user single pointer objects of the following styles: Line,
Needle, Two sided needle, Ellipse, Diamond, Arrow, Point in 1. (All other
pointer styles are generated as Line.)

• Potentiometer objects: all types.

• Pushbutton objects: all types.

• Switch objects: all types.

• FEP objects.

• Wave audio objects.

• Animated objects.

• JavaBean objects.

• System objects: ASCII objects, mouse objects, SystemCursor objects,
SystemDate objects, and SystemTime objects.

• Modes as objects (triggers).

• User objects (.udo).

C H O O S I N G R A P I D O B J E C T S

15
Nongenerated Functions or Options

Of the objects that are generated, the following functions and options are not
generated:

G E N E R A T E D
O B J E C T S

N O N G E N E R A T E D F U N C T I O N S
O R O P T I O N S

All active graphic objects name function is not generated.

Data store, number array, string
array, integer array objects

saveToFile: is not generated (a Java
applet security limitation).

Graphic display objects dump:forBuffer: (used to debug
applications for C code generation) is
not generated as Java code.

For behavior differences, see “Graphic
Display Objects” on p. 36.

Holder objects Cannot be generated if they hold
objects or object types that cannot
be generated.

holdNew and holdCopyOf: for user
objects are not generated.

❖ NOTE: Use the hold: function
instead.

Mouse objects No functions are generated except for
setCursor:overObject: and
setCursor:overSwitchPos:.

Object arrays Cannot be generated if they hold
objects or object types that cannot
be generated.

Pointer objects Only scale angles from 0-360 degrees are
generated.

Primitive objects No user-defined properties are
generated.

Round and square dials, vertical
and horizontal linear indicators

Moving scale option is not generated.

A P P L I C A T I O N D E S I G N G U I D E L I N E S

16
JavaBean Object Considerations

The following is a list of considerations when using JavaBean objects in a
Rapid application:

• Browser compatibility: For the widest range of Web browser
compatibility, use JavaBean objects that are compatible with JDK 1.1.

• Java applet security: Do not use JavaBean objects that try to save files or
do other privileged operations on the simulation user’s computer (a Java
applet security limitation).

• Windowed and non-windowed objects: If Java code is generated for an
application, windowed and non-windowed JavaBean objects are generated
according to their inherent Java definitions, regardless of settings in Rapid.

• Font property: For the JavaBean object’s font property, seven functions
are not generated—boldGet, boldSet:, italicGet, italicSet:, nameGet, nameSet:,
sizeGet.

String objects is formattedAs: and byteAt: are not
generated.

System cursor objects The system cursor objects noEntry,
startArrow, and upArrow are not
generated. The default cursor shape is
used instead.

User objects (.udo) Interface messages (used in applications
for C code generation) are not generated
as Java code.

Wave audio objects The volume: function can only accept
one value, which affects both the left
and right speaker channels. Do not set
different left and right channel values.

G E N E R A T E D
O B J E C T S

N O N G E N E R A T E D F U N C T I O N S
O R O P T I O N S

C H O O S I N G R A P I D O B J E C T S

17
• Image property: For the JavaBean object’s image property, two functions
are not generated—clear and loadFromFile:.

Instead of using the loadFromFile: function to load an image, you can
assign a bitmap object to the image property.

Example

The following assignment decreases response time and should, therefore,
be used sparingly:

JavaBean1.image := Bitmap1

Choosing from Similar Objects

Choose objects that fulfill simulation functionality requirements, yet do not
weigh down the application after code generation.

� When possible, use:

• System fonts (see “Using Native and Nonnative Fonts” on p. 26) instead
of nonstandard or customized fonts.

• Arrays instead of data stores.

• Local variables instead of data objects.

• Touch screen objects instead of many transparent pushbuttons.

• Icon system cursor with the setCursor:overObject: function of the mouse
object. This becomes the hand cursor in the simulation applet.

A P P L I C A T I O N D E S I G N G U I D E L I N E S

18
REFERENCING FILES

A Rapid application often references files outside of the application. External
files include: Rapid generated files (.rds and .rar), audio files (.wav), image files,
and JavaBean resources.

The Java code generation process handles each of these file types somewhat
differently.

Data Store Files (.rds) and Array Files (.rar)

By default, the Java code generation process looks for these files in a subfolder
called “resources” (all lowercase letters). You must create this folder yourself
next to the .rpd application. To use a subfolder other than one called
“resources,” see “[Resource Folders]” on p. 48.

Use a relative path in the application logic to load referenced files. For
example, Array1 loadFromFile: 'resources\MyArray.rar' loads the file MyArray.rar,
located in the resources folder.

During code generation, these files are converted to text format (.txt).

Audio Files (.wav)

Audio files should be placed in the same folder as .rds and .rar files.

During code generation, files are copied; they are not compressed, combined,
or otherwise changed. For further details on working with audio files, see
p. 22.

Image Files

Keep image files in a subfolder other than the “resources” folder.

During code generation:

• Linked .jpg files are copied and renamed.

• All supported bitmap formats—other than linked .jpg files—are converted
to .gif files and combined when possible. For further details on working
with graphic files, see p. 19.

W O R K I N G W I T H G R A P H I C F I L E S

19
JavaBean Resources

Keep JavaBean resources in a subfolder other than the “resources” folder.

Before code generation, adjust make.config file. For instructions, see
“Specifying a JavaBean Resource Folder” on p. 49.

WORKING WITH GRAPHIC FILES

RapidPLUS Web Studio supports bitmaps of the following types: .bmp, .dib,
.png, .jpg, .ico, .msp, .pcx, and .psd. When these bitmaps are generated as Java
code, all of them—except for linked .jpg files—are converted to 256-color .gif
files. The .jpg and .gif formats are the only graphic formats that all Web
browsers support for Java technology.

Choosing Formats for Application Graphics

There are several issues to keep in mind when deciding which graphic format
to use in a Rapid application:

• A .gif file uses a 256-color palette while a .jpg file uses a true-color palette.

• A .gif file supports transparency, a .jpg file does not.

• Bitmaps that share the same color palette, same transparent color, and are
in the same download category (see “Image Download Categories” on
p. 57), are automatically combined into a single .gif. The simulation
download time is less if there are fewer .gif files.

• Simulations with fewer .gif files consume less system resources, which may
be a significant concern for Windows 95 and 98 operating systems.

A P P L I C A T I O N D E S I G N G U I D E L I N E S

20
Recommendations

� Use True-Color Display Settings

For high quality graphics, when possible work with the monitor display
setting in true color.

� Use the Same 256-Color Palettes for Bitmap/Image Objects

If your application uses 256-color graphics, limit the number of different
palettes so that the graphics can be combined into as few .gif files as possible.

To use the same 256-color palette:

1 In your graphics editor, set the same 256-color (or less) palette for all
bitmaps.

2 In the Rapid application, import the bitmaps (File|Import Bitmaps) or add
bitmap/image objects in the Object Layout work area.

❖ NOTE: If the monitor display setting is 256 colors, Click Yes to replace the
application palette with the object palette. Only one palette of 256 colors can
be used in an application when the monitor is set to 256 colors.

3 If you paste images in the Object Editor window and the display setting is
either true or high color, a message box opens in which you can choose to
preserve the pasted bitmap’s palette. Click Yes.

� Use the Same Transparent Color

Multiple .gif files that use transparency must have the same transparent color
so that the graphics can be combined. Therefore, limit the number of
transparent colors.

To use the same transparent color:

1 In the Object Editor window, color the area that you want to be
transparent with a color not used by the rest of the image. Use the same
color for all images with the same palette. For example, color the
background of all the images magenta.

2 In the Colors Edit dialog box, make that color transparent. Using the same
example, make magenta transparent.

W O R K I N G W I T H G R A P H I C F I L E S

21
� Use Linked .jpg files for Complex Color

Reserve linked .jpg files for images that require the complex color variations
available in true color.

Sometimes you can reduce the number of colors in a .jpg without
compromising the quality of the image. Reducing the number of colors in the
image, and then saving it again as a .jpg (and thus, returning the true color
palette) can reduce the size of the file.

Adjust the .jpg compression to balance file size with image quality (usually
between 50% and 70% compression).

Integrating true-color graphics with Rapid’s 256-color
object palette

Rapid objects such as pushbuttons and switches generate 256-color
bitmaps, even if the application displays them in true color. If you want
the generated simulation to have true-color buttons or switches, use:

• Bitmap objects (i.e., bitmap or image objects), linked to true-color .jpg
files, that show each position of the Rapid object;

• Transparent, flat pushbuttons; and

• Logic to show and hide the bitmap objects.

To integrate true-color graphics with Rapid objects:

1 Add a bitmap/image object linked to a .jpg that shows the default
position of the device’s button.

For example, to display a remote control in true color, add a single
bitmap object linked to a .jpg that shows all the buttons in the Out
position.

2 Superimpose bitmap/image objects, linked to .jpg files, for all positions
of the pushbutton or switch.

In our example, superimpose .jpg files showing the In position of the
buttons—using a separate bitmap object for each button.

3 On top of each position, add a flat pushbutton object that is fully
transparent (i.e., in the Colors Edit dialog box, define all color
elements as transparent).

4 Use logic that depends on the condition of the pushbutton to show
and hide the bitmap/image objects.

A P P L I C A T I O N D E S I G N G U I D E L I N E S

22
Further graphics optimization

You can further reduce the size and number of files in the simulation
applet by using a combination of .jpg and .gif files: a .jpg file for the default
position of the device’s buttons, and .gif files for the non-default positions
of the device’s buttons. No Rapid logic is required for this method.

To combine .jpg and .gif files for Rapid objects:

1 Add a bitmap/image object linked to a .jpg that shows the default
position of the device’s button.

2 On top of each position, add a flat pushbutton object that is fully
transparent (i.e., in the Colors Edit dialog box, define all color
elements as transparent).

3 In the Object Editor, paste a 256-color .gif into the pushbutton’s In
position. Be sure to use the same color palette and transparent color for
all (or most) of the .gif files.

WORKING WITH AUDIO FILES

Many Rapid applications reference external audio files (.wav files) so that the
simulated device will sound like the real thing. During code generation,
referenced audio files are copied to the generated packages, maintaining the
folder hierarchy for the simulation code (see also “Referencing Files” on
p. 18). Audio files are not compressed, combined, or otherwise changed
during code generation.

This sections describes:

• Formatting .wav files for Java compatibility.

• Adding .wav files to the Rapid application.

• Substituting .wav files with Macromedia® Flash™ audio files (.swf) for
better sound quality.

W O R K I N G W I T H A U D I O F I L E S

23
Using .wav Audio Files

RapidPLUS Web Studio supports every type of .wav file; however, the early
Java runtime environment (JRE 1.1) does not. Large, high-quality sound files
should be converted for the widest range of compatibility for the Java
environment, and compressed for better performance.

❖ NOTE: Save a copy of the high-quality sound files for editing.

For Java compatibility, a reasonable compression ratio, and reasonable sound
quality, format .wav files as follows:

• 8-bit audio data

• Mono audio

• 8 kilohertz sampling rate

• Global System for Mobile communication (GSM) digital compression

If download time is not a factor, such as for distribution on a CD-ROM,
raising the sampling rate from 8 kilohertz will produce more natural sound.

Adding Wave Audio Objects

When you add audio files to the Rapid application, you can designate
them to download in the background, after the simulation applet opens.
Downloading audio files after the applet opens helps to optimize the initial
download time.

To designate .wav files to download in the background:

1 Add a wave audio object to your Rapid application and open its More
dialog box.

2 In the File box, type or browse to the .wav file in the resource folder.

Leave the Device Name and Open Function Parameters as is.

A P P L I C A T I O N D E S I G N G U I D E L I N E S

24
3 Clear the Auto Open Device check box.

Clearing the check box enables .wav files to download in the background.
If the check box is not cleared, the simulation user must wait until the
.wav file finishes downloading before the simulation can open.

The dialog box should appear similar to the following:

4 Click OK.

� Make a separate .wav file for each sound in the simulation. The simulation
performs better this way than if the sounds are all in one file.

Adding Logic for Wave Audio Objects

� When entering logic for a wave audio object to load and play a .wav file, do
NOT load the .wav file and play it in the same block of code. Instead, load the
file, using the load: function, on the entry activity of the mode where the file
can be played. If necessary, the file can be loaded in the entry activities of the
root mode.

Substituting Flash Audio Files

❖ NOTE: Only .wav files can be used in the Rapid application. Flash audio files
can only be substituted while the simulation applet runs in a Web browser.

If simulation users have the Macromedia Flash Player plug-in for their Web
browsers, you can use Flash audio files (.swf files) for improved audio quality.
Although Flash audio provides higher-quality sound than the compressed
.wav files, .swf files use more bandwidth. At runtime, the simulation applet

W O R K I N G W I T H A U D I O F I L E S

25
will automatically substitute Flash audio files for .wav files if all of the
following play conditions are met:

• There is an .swf file with the same name as the .wav file used in the
simulation applet. For example, both MySound1.wav and MySound1.swf
must be together in the same resource folder.

• The simulation applet is running in Internet Explorer or Netscape 6.x on
Windows.

• The user has the Flash plug-in (5.0 or higher for Internet Explorer, 6.0 or
higher for Netscape) or ActiveX installed.

• The download rate is at least 10,000 bytes/second (10 KB/second). To
adjust the minimum download, see “The Rapid Application Library” on
p. 123.

To prepare Flash audio files:

1 Copy the file sound_template.fla from the \\Rapidx\Java folder to the Rapid
application’s resource folder (i.e., where the application’s .wav file is
located).

2 Rename the file to <filename>.fla, where <filename> matches the name of
the .wav file.

3 Open the .fla file in Flash.

4 In Flash, import the high-quality .wav file (not the GSM file) using
File|Import to Library.

5 Select the imported .wav file in the Frame Properties panel. (Layer 2 must
be selected in the Timeline panel.)

6 Extend the movie so its length matches the length of the original sound
file.

To do this, add a frame at the position where the sound will end. Since
there are 12 frames per second, place the frame at

<length of .wav file, in seconds> * 12

7 Export the file as a Movie (.swf file) to the same location as the .wav file it
replaces.

8 Listen to the Flash audio file play in the simulation applet and complete
editing the audio files. Only then can you delete the .fla file.

When you generate Java code, the .wav and .swf files are copied to the
generated packages. When a user runs the simulation applet, the .swf file will
be played—if all the play conditions were met.

A P P L I C A T I O N D E S I G N G U I D E L I N E S

26
USING NATIVE AND NONNATIVE FONTS

If you use native system fonts in your Rapid application, you can save
download time for the simulation applet. This is because the simulation
applet can use system fonts from the simulation user’s computer. Nonnative
fonts are generated as .gif files, which add to the simulation size and increase
download time.

Native Fonts

In an effort to be platform independent, Java technology uses five font types,
called logical fonts. These logical fonts are mapped to native system fonts,
called physical fonts. The logical fonts recognized by the Java runtime
environment are Serif, SansSerif, Monospaced, Dialog, and DialogInput.
Physical fonts have names such as Times New Roman, Arial, and Courier New.

For example, Java code usually maps logical fonts to the following physical
fonts on Windows and Macintosh operating systems:

• Serif � Times New Roman.

• SansSerif and Dialog � Arial.

• Monospaced and DialogInput � Courier New (Windows) or Courier
(Macintosh).

Java technology also uses the following Japanese fonts in Japanese Windows
operating systems:

• MS

• MS P

• MS

• MS P

U S I N G N A T I V E A N D N O N N A T I V E F O N T S

27
Specifying Fonts Used by Java Code

Sometimes font mapping in Java code does not produce the results you
expect. Through Rapid, you can specify physical fonts for the Java code to use
directly, instead of by mapping. If the simulation user doesn’t have the
specified font in the standard location, the Java code will revert to mapping.

To specify the physical font that the Java code will use:

1 In a text editor, open the Rapidx.ini file.

2 Under the [JavaSystemFonts] group, add a semicolon at the beginning of
the line with the font type you want to specify. This comments out the
line and specifies the physical font.

Example

By commenting out the font type, the Java code uses Arial directly, instead
of mapping to the font type SansSerif.

3 Save and close the file.

Changing Native Fonts to .gif files

All of the listed native system fonts are supported by Java technology, but
implementation can vary slightly in different versions of the Java
environment. You can prevent the variations by changing these fonts to
.gif files.

To change native fonts to .gif files:

1 In a text editor, open the Rapidx.ini file.

2 Under the [JavaSystemFonts] group, add a semicolon at the beginning of
the lines with the font name and type that you want to make into a .gif.
This comments out the lines and the font will be generated as a .gif.

[JavaSystemFonts]

FontName1=Arial
;FontType1=SansSerif

Commented out

A P P L I C A T I O N D E S I G N G U I D E L I N E S

28
Example

By commenting out the font name and type, the code generation process
will generate Arial as a .gif.

3 Change the numbering of the remaining fonts so that they begin with
number one (1) and continue sequentially.

4 Save and close the file.

When the simulation applet is generated, the commented out font will be
incorporated into the simulation as a .gif.

Nonnative Fonts

Nonnative fonts must be installed on the operating system. Code generation
groups all the nonnative fonts into a .gif file. The code generation process also
creates an .rtf file for each nonnative font (in the \\<MyApp>\Fonts folder of
the code generation output folder). The .rtf file contains the information
necessary to locate and show the letters from the .gif file in the simulation.

� Font Recommendations

Use native system fonts when possible, or change the Java code’s mapping to
a specific physical font.

However, if you must use nonnative fonts, reduce the size of the generated .gif
by limiting the font’s character range in the font object’s Advanced dialog
box.

[JavaSystemFonts]

;FontName1=Arial
;FontType1=SansSerif

Commented out

O P T I M I Z I N G R A P I D L O G I C

29
OPTIMIZING RAPID LOGIC

As with any Rapid application, efficient and concise use of modes, transitions,
triggers, activities, and actions leads to better simulation performance and
smaller application size. Therefore, avoid excessive or redundant logic.

� The following guidelines keep application logic concise:

• Use parent-to-child mode transitions instead of many transitions and
triggers between modes.

• Use concurrent modes or user objects for parts of the system that are
functionally independent of each other and can run simultaneously.

• Define user functions to invoke common blocks of logic in several places
as a single function.

• Use For and While loops and If...else branches instead of multi-mode loops
with conditions.

PLANNING FOR SCENARIOS

Your simulation applet might be combined with a scenario to produce a total
multimedia presentation. Because scenarios often require specific
functionality from the simulation applet, the overall production flow is more
efficient when the scenario author is involved in the design phase of the
Rapid application. Good communication with the scenario author can help
you focus the application requirements on features, images, and other
resources that are required for scenarios. For details about scenario objects and
creating scenarios, refer to the manual Using the Scenario Authoring Tool.

You should consider the following issues before and during development of
the Rapid application.

Download Time

If the simulation and scenarios will be distributed over the Web, you must
consider download time. In some cases, you may decide not to simulate
features that would require large image files (especially high-quality .jpg files).

Another option to reduce download time is by presenting aspects of the
product in scenarios, without actually simulating them, and therefore save file

A P P L I C A T I O N D E S I G N G U I D E L I N E S

30
size by reducing the amount of logic. Such features would only be activated in
the scenario with a transparent pushbutton clicked by the scenario author. In
the application you should “hide” the pushbutton from the simulation user,
i.e., place it where the simulation user is unlikely to click.

Determining the Scope of Simulation Functionality

Your Rapid application can accurately simulate most features and functions in
a product. However, real-world time constraints and application size may
place restrictions on the number (and detail) of the features to simulate.

Example

An electronic dictionary and thesaurus holds over 130,000 words, but only 20
words will be presented in the simulation.

Determining Default Settings

The simulation reverts to its default state at the beginning of each scenario. In
general, the simulation defaults should mimic the default settings of the
product itself. However, there may be times when a different default is
preferred.

Example

A digital camera has a menu system that can only be used when the LCD is
on. Even though the default setting for the LCD is off, the simulation will be
more visually effective if the simulation’s default setting shows the LCD on.

Referencing Objects During Runtime

Objects added or copied during runtime do not have object reference names.
Therefore, the scenario author cannot record a user action on the dynamically
generated object. Likewise, the object cannot be used as a target object for
scenario indicators or simulation prompts.

Discuss these issues with the scenario author to avoid conflicts. You may need
to hide and show some objects instead of dynamically generating them.

P L A N N I N G F O R S C E N A R I O S

31
Adding Supplementary Devices

In some cases, your product by itself is not enough to create effective
scenarios—a telephone needs incoming and outgoing calls, an MP3 player
needs a computer, an audio/video receiver needs input and output devices.
You may need supporting devices to fully represent your product’s
capabilities.

Supplementary devices do not need to be fully functional, nor do they need
to look realistic. In fact, using cartoon-style .gif files instead of high-quality
.jpg files will both reduce the overall file size and keep attention focused on
the main device.

Example

The simulation of a cellular telephone is more effective with another
telephone that can send and receive calls. If the cellular telephone has call
waiting, caller ID, and conference-call capabilities, additional telephones are
required to demonstrate these features.

Including Special Images or Audio Files

As with supplementary devices, supporting images and audio files can
enhance the effectiveness of a scenario.

Example

The scenario author may require specific music files to showcase music
enhancement features on an MP3 player. The scenario author may also
require an image to help indicate the size of the player.

Activating the Mouse Object

As in all Rapid applications, you must activate the mouse object (activate
function) to make use of mouse events and to assign cursor shapes over
specified graphic objects.

For scenarios, the active mouse object enables the scenario author to record
mouse events over any graphic object. This provides more flexibility when
building scenarios.

A P P L I C A T I O N D E S I G N G U I D E L I N E S

32
Updating the Simulation

You can continue adjusting or updating the simulation after work on the
scenarios has begun. For compatibility with scenarios that are in progress or
already finished, do not change Rapid object names between versions. For
details on how to update the simulation for the scenario author, see
“Updating the Simulation While Scenarios are Being Developed” on p. 70.

ANTICIPATING DIFFERENCES IN
ENVIRONMENTS

Your Rapid application and your simulation applet run in different
environments:

• The Rapid application runs on your computer’s operating system.

• The simulation applet runs on the Java virtual machine.

There are behavioral differences—mostly due to code incompatibilities
between the two environments—that you should consider when you design
Rapid applications for Java code generation. Behavioral differences between
Rapid applications and simulation applets are presented in this section.

Condition-Only Transitions

R A P I D B E H A V I O R J A V A B E H A V I O R

When a transition is based solely on
the condition of an object, the
Rapid state machine checks the
condition every time the object
changes.

The Java state machine, which runs
in a different thread than the object,
may not check the condition of the
object on every cycle. Therefore, the
state machine may “miss” the exact
value of an object.

A N T I C I P A T I N G D I F F E R E N C E S I N E N V I R O N M E N T S

33
� Condition-Only Transition Recommendations

In general, try to avoid using condition-only transitions. But when one
cannot be avoided, use the following recommendation:

• Use a condition that does not require an exact value so that the condition
is guaranteed to be triggered (as in the example above).

• In the Rapid application, use a breakpoint at the condition. Run the
application to be sure the condition is evaluated only once.

See also “Self-Changing Mode Activities” on p. 39.

Example
Where powerON_animation is an
animation object with 8 frames, the
Rapid state machine evaluates the
following condition-only transition
every time the value of the
animation object changes:

& powerON_animation.currentFrame =
powerON_animation.lastFrame-1
Therefore, when the frame value
changes from 6 to 7, the condition
is triggered.

Example/Solution
The Java state machine might not
evaluate the condition until after the
animation object has already reached
the last frame. Therefore, use
conditions that are guaranteed to be
triggered:

& powerON_animation.currentFrame >=
powerON_animation.lastFrame-1

R A P I D B E H A V I O R J A V A B E H A V I O R

A P P L I C A T I O N D E S I G N G U I D E L I N E S

34
Date Object year Property

Exported Events of User Objects Held by Holder Objects

A user object uses exported events to trigger transitions in its parent
application. Sometimes a user object is held by a holder object, in which case,
the holder can use the user object’s exported events to trigger transitions.

When an exported event (from the holder object) triggers a transition from
one mode to another, and the same exported event triggers a transition back
to the original mode, behavioral differences between the Rapid and Java
environments occur. The following examples illustrate the differences in
behavior and provide a solution when designing applications for Java code
generation.

R A P I D B E H A V I O R J A V A B E H A V I O R

Assigning a one- or two-digit integer
to the date object’s year property
treats the year as if it is from the
1900s.

Assigning a one- or two-digit integer
to the date object’s year property
treats the year as if it is from the
current century.

Example
The following code calculates the
date for the year 1903.

Integer1 := 3
Date1.year := Integer1

Example
The same code calculates the date for
the year 2003.

R A P I D B E H A V I O R J A V A B E H A V I O R

The transitions take place at the
appropriate time: when the
exported event occurs in Mode A,
the transition to Mode B takes place;
when the exported event occurs in
Mode B, the transition to Mode A
takes place. (See the following
example.)

When the first transition takes place
(e.g., the exported event occurs in
Mode A thereby triggering the
transition to Mode B), the second
transition (from Mode B to Mode A)
is immediately triggered. (See the
following example.)

A N T I C I P A T I N G D I F F E R E N C E S I N E N V I R O N M E N T S

35
Example
The following diagram illustrates
the two transitions:

Example/Solution
To avoid the problem, add another
mode (Mode C). Mode B should
contain an always-true condition to
create a transition to Mode C.

The following diagram illustrates the
workaround in Rapid’s logic for the
transitions:

❖ NOTE: You might need to move
some or all activities from Mode B to
Mode C in order to reproduce the
same functionality as in the original
application.

R A P I D B E H A V I O R J A V A B E H A V I O R

Parent app lication

M ode A

M ode B

H olderUDO 1
exportedEvent

H olderUD O 1
exportedEvent Parent application

Mode A

Mode C

HolderUDO1
exportedEvent

HolderUDO1
exportedEvent

Mode B

&1=1
(always-true
condition)

A P P L I C A T I O N D E S I G N G U I D E L I N E S

36
Graphic Display Objects

� Graphic Display Object Recommendation

To produce the same results in the simulation applet as in the Rapid
application, images should use the same color palette as that defined in the
graphic display object.

❖ NOTE: If the color palette of the image does not match the graphic display
object’s palette, color manipulation functions (such as attributeSetReverse and
attributeSetXOR) may not produce expected results.

Holder Object holdCopyOf: Function

R A P I D B E H A V I O R J A V A B E H A V I O R

When an image is brought into a
graphic display object, its colors are
“mapped” to those defined in the
object’s palette.

When an image is brought into a
graphic display object, the image
retains its original colors and is not
changed (or limited) by the colors in
the object’s palette.

Example
A 256-color image appears in two
colors if the graphic display object’s
palette is set to two colors.

Example
A 256-color image appears in 256
colors, even if the graphic display
object’s palette is set to two colors.

R A P I D B E H A V I O R J A V A B E H A V I O R

A copied object has the properties
of the object’s current state.

A copied object has the properties of
the object’s default state (due to size
optimization in Java code).

A N T I C I P A T I N G D I F F E R E N C E S I N E N V I R O N M E N T S

37
Image Objects

Color and copy functions are slower in the Java environment than in the
Windows environment, especially for cumulative changes on image objects.

� Image Object Recommendations

Adjust colors using red, green, and blue (RGB) values. Avoid a sequence of
cumulative color changes (e.g., avoid the changeBlueBy: function) on an image
object. If you require a cumulative-type effect, set the color (e.g., with the
setBlue: function) in different places in the logic.

Jog Dial Objects

Modulo Function Values

R A P I D B E H A V I O R J A V A B E H A V I O R

Clicking any position on the jog
dial makes the indicator jump to the
“clicked” position.

The jog dial must be clicked and
dragged to the required position.

R A P I D B E H A V I O R J A V A B E H A V I O R

The value of the modulo: function
cannot be negative.

Example
The function Integer1 := -8 modulo: 3
assigns the value “1” to Integer1.

The value of the modulo: function
can be negative.

Example
The function Integer1 := -8 modulo: 3
assigns the value “-2” to Integer1.

A P P L I C A T I O N D E S I G N G U I D E L I N E S

38
Object cursorEntered and cursorExited Events

Saving Files

Selecting Multiple Pushbuttons

R A P I D B E H A V I O R J A V A B E H A V I O R

If an object with cursorEntered
and/or cursorExited events is
completely covered by another
object, the events are generated.

If an object with cursorEntered and/or
cursorExited events is completely
covered by another object, the events
are not generated. (This is due to the
component model used by Java
technology.)

When the mouse button is pressed,
the cursorExited event is generated
when the cursor exits the object’s
bounds.

When the mouse button is pressed,
the cursorExited event is generated
when the mouse button is released
outside the object’s bounds.

R A P I D B E H A V I O R J A V A B E H A V I O R

During runtime, files such as
.rar and .rds can be saved in any
folder with write permission.

During runtime, these files cannot
be saved (due to Java security
restrictions).

R A P I D B E H A V I O R J A V A B E H A V I O R

Holding the Shift key while clicking
one or more pushbuttons holds
them in the In position.

After releasing the Shift key, clicking
any pushbutton (selected or not)
releases all the buttons (i.e., they all
return to the Out position).

Holding the Shift key while clicking
one or more pushbuttons holds them
in the In position. After releasing the
Shift key, clicking a selected button
releases only that button.

A N T I C I P A T I N G D I F F E R E N C E S I N E N V I R O N M E N T S

39
Self-Changing Mode Activities

See also “Condition-Only Transitions” on p. 32.

Sorting Strings in Array or Data Store Objects

R A P I D B E H A V I O R J A V A B E H A V I O R

A condition that is dependent on a
self-changing mode activity (e.g.,
changeBy:) is triggered when the
mode activity reaches the
condition-triggering state.

A condition that is dependent on a
self-changing mode activity may or
may not be triggered when the mode
activity reaches the condition-
triggering state.

Why? Because the state of an object
that is changed by a mode activity is
not checked after each cycle (due to
Java code optimization).

Example
The condition Integer1 = 2 is
triggered when the mode activity
Integer1 changeBy: 1 reaches 2.

Example
The condition Integer1 = 3 might be
triggered when the mode activity
Integer 1 changeBy: 1 reaches 3, but
the condition Integer1 = 2 might not
be triggered when the same mode
activity reaches 2.

R A P I D B E H A V I O R J A V A B E H A V I O R

String comparisons are sorted
byte-by-byte (because Rapid
holds strings in double-byte
character sets).

String comparisons are sorted
character-by-character (because Java
code holds strings in Unicode).

Generated string array or data store
objects may sort differently for non-
Latin characters.

A P P L I C A T I O N D E S I G N G U I D E L I N E S

40
Transparent Color Assignment at Runtime

User Function Arguments

R A P I D B E H A V I O R J A V A B E H A V I O R

At runtime, changing the color of
an object to the color that was
designated as transparent (during
design time), renders the object
transparent.

At runtime, changing the color of
an object to the color that was
designated as transparent (during
design time), shows the color. The
object does not appear transparent.

R A P I D B E H A V I O R J A V A B E H A V I O R

The property of an object used
as the argument of an expression
can be changed by calling it in
a user function.

Example
The following user function is
defined in MyUDO1.udo and
exported:

getTime: <Integer:hourInteger>
minuteInteger: <Integer:minuteInteger>

<hourInteger> := SystemTime.hours
<minuteInteger> := SystemTime.minutes

The function is called in the parent
application using the hour and
minute properties of the
preformatted time object:

MyUDO1 getTime: Time1.hours
minuteInteger: Time1.minutes
The function returns the current
system time.

The property of an object used
as the argument of an expression
cannot be changed by calling it in
a user function.

Example
The same function called in the
parent application cannot use
properties of an object (it generates
an error during code generation).

Instead, use integer objects in the
parent application:

MyUDO1 getTime: hour_int
minuteInteger: minute_int
where

Time1.hours := hour_int
Time1.minutes := minute_int

A N T I C I P A T I N G D I F F E R E N C E S I N E N V I R O N M E N T S

41
User Object Size and Position

� User Object Size and Position Recommendation

In each user object, position the upper-left graphic object in the upper-left
corner of the Object Layout work area. This way you will not have to adjust
for a shift of objects when the user object is added to the parent application
(as seen in the previous example).

The placement of the lower-right graphic object is irrelevant, as long as there
is room for it to change in size (if required).

R A P I D B E H A V I O R J A V A B E H A V I O R

A user object can change size during
runtime. That is, if a graphic object
inside a user object changes size
during runtime, the bounds of the
user object will change as well.

After Java code generation, the user
object keeps the size of its original
Object Layout work area.

A user object’s Object Layout work
area “shrinks to fit” around its
graphic objects when added to a
parent application.

Example Example

Parent application

User
object

Parent application

User
object

43
C H A P T E R 3

Generating Code
and the Simulation

Generating a simulation applet has three phases:

i. Determining configuration settings.

ii. Generating Java code from Rapid code.

iii. Making the simulation—i.e., compiling and packaging the Java code.

Immediately after code generation, a batch file, make.bat, routinely runs to
make the simulation. You can control which commands to run with make.bat
by setting options in the make.config file.

This chapter presents guidelines for:

• Setting make.config to configure the “make” process.

• Generating Java code by setting preferences and running the
RapidPLUS Web Studio code generation process.

• Optimizing simulation download for better initial simulation
performance.

❖ NOTE: The information presented in the chapter does not apply to the Scenario
Player applet. For information about code generation for the Scenario Player
applet, see “Generating Code to Create the Scenario Player Applet” on p. 78.

G E N E R A T I N G C O D E A N D T H E S I M U L A T I O N

44
SETTING CONFIGURATION OPTIONS

The batch file make.bat starts the process of compiling Java code, generating
selected simulation packages, and launching selected viewers. Setting options
in the make.config file (formatted as a Windows configuration file) controls
the commands that will run in make.bat.

To set configuration options for making simulations:

1 In a text editor, open make.config, located in the \\Rapidx\Java folder. The
file is split into groups, designated by group titles in square brackets:

[Make Targets]
[Viewers]
[Make Options]
[Resource Folders]
[System]
[Versions]

2 Set options as described in the following tables. You can set Boolean
options to yes/no or true/false.

❖ CAUTION: Blank lines in make.config may cause the make process to fail.
You can comment out options that don’t apply by typing a semicolon (;) at
the beginning of the line.

3 Save and close the file.

4 (Optional) To determine (or override) the settings for the current
simulation only, copy the make.config file in the \\Rapidx\Java folder and
paste it into the code generation output folder. For easy identification, you
can delete all the fields and sections except for those containing the
changes you require (but do not leave blank lines between fields).

S E T T I N G C O N F I G U R A T I O N O P T I O N S

45
[Make Targets]

These options determine what kind of simulation will be created. See
“Simulations and Simulation Packages” on p. 6 for details about the different
simulation packages.

O P T I O N D E S C R I P T I O N

unsignedApplet Compiles and generates applets for all Web
browsers.

Default setting: yes.

standAlone Compiles and generates a stand-alone simulation
for the stand-alone Prototyper.

Default setting: yes.

import Creates the folder necessary for importing files
into the development environment. Used for
debugging simulations in Java code.

Default setting: no.

scenarios Creates the folders necessary for building
scenarios.

Default setting: no.

fepCD Creates the folders necessary to install (and
uninstall) the FEP on a hard disk or CD-ROM.

Default setting: yes, commented out.

installFep Runs the installation program for the FEP
automatically after code generation (i.e., on the
Rapid application designer’s computer).

Default setting: yes, commented out.

G E N E R A T I N G C O D E A N D T H E S I M U L A T I O N

46
[Viewers]

These options determine which viewers, if any, to open automatically after
making the simulation.

O P T I O N D E S C R I P T I O N

runStandAlone If a stand-alone simulation was generated, this
option runs the simulation in the stand-alone
Prototyper.

Default setting: yes.

appletViewerHTML If a simulation applet was generated, this option
runs the designated file in the Java applet viewer.

Default file: demo_sim.html, commented out.

defaultBrowserHTML If a simulation applet was generated, this option
runs the designated file in the default Web
browser.

Default file: demo_player.html.

viewer1 If a simulation applet was generated, these
options point to additional Web browsers and run
the designated files.

Default settings: commented out.

viewer1HTML

viewer2

viewer2HTML

S E T T I N G C O N F I G U R A T I O N O P T I O N S

47
[Make Options]

These options are used for locating a custom Scenario Player applet and for
debugging simulations.

O P T I O N D E S C R I P T I O N

customScenarioPlayer
Folder

Specifies the location of a custom Scenario Player
applet folder.

Default folder: C:\Rapid\Java\myPlayer,
commented out.

silent When set to yes, the make process command
window only shows file operation headings.

When set to no, the command window shows file
operations, command lines, and file contents.

Default setting: yes.

verbose When set to yes, the make process command
window shows all utilities and output files.

Default setting: no.

forceExecution Forces execution in case of errors. Used for
debugging the make process.

Default setting: no.

cleanUp Removes temporary files created for the purpose
of making the simulation.

Default setting: yes.

displayErrorWindow Opens a dialog box in case errors are detected
during compilation.

Default setting: yes.

G E N E R A T I N G C O D E A N D T H E S I M U L A T I O N

48
[Resource Folders]

For Rapid applications that reference external files (e.g., .rar, .rds, and .wav
files), this option directs the make process to the folder(s) holding these
resources. See “Referencing Files” on p. 18 for more information on referenced
files in the Rapid application. See “Specifying a JavaBean Resource Folder” on
p. 49 to reference folders with JavaBeans.

In addition to a subfolder called “resources,” you can create additional
subfolders, place files in the application folder (i.e., not in a subfolder), or
use a name other than “resources.”

Example

To use more folders, type additional lines into the make.config file, as in the
following example:

O P T I O N D E S C R I P T I O N

folder1 Designates a subfolder (under the application
folder) to use for referenced files.

Default setting: resources.

[Resource Folders]
;=================
; Additional folders for application resources
folder1=resources
folder2=MyFolderA
folder3=MyFolderB
folder4=.
;

A period indicates referenced
files contained in the application
folder (i.e., not in a subfolder)

S E T T I N G C O N F I G U R A T I O N O P T I O N S

49
[System]

These options point to the location of required tools on your system. If you
update or change the location of DashO-Pro or JDK you must update
these options.

[Versions]

These parameters are for version control. Do not modify these parameters.

Setting Options for JavaBean Objects

Specifying a JavaBean Resource Folder

For Rapid applications that use JavaBean objects, you can direct the make
process to a folder holding the JavaBean resources.

To specify a folder with JavaBean resources:

1 Open the required make.config file (see “Setting Configuration Options” on
p. 44 for details).

2 At the end of the file, add a group title and group options as in the
following example:

O P T I O N D E S C R I P T I O N

dashOFolder Specifies the location of DashO-Pro tool.

jdk13 Specifies the location of JDK 1.3.

satDir Specifies the location of the Scenario Authoring
Tool (SAT). If known, use the location on the
scenario author’s computer.

O P T I O N D E S C R I P T I O N

lookAndFeel Version number to be written to the .html files for
site compatibility issues.

WebStudioVersion Version number of the Java libraries used to
create the simulation applet.

G E N E R A T I N G C O D E A N D T H E S I M U L A T I O N

50
Example

The sample subfolder, rapidbeans (shown in bold), sits under the
application folder.

[External Resource Folders]
; Additional folders for JavaBean resources
folder1=rapidbeans

Bypassing JavaBean Objects in DashO-Pro

You might find that JavaBean objects added in the Rapid application function
properly, but they do not function in the simulation applet. During code
generation, the DashO-Pro optimization and obfuscation process could render
the JavaBean objects inoperable. You can solve this problem by adding a
group to the make.config file that directs DashO-Pro to bypass specific .class or
.jar files.

To direct DashO-Pro to bypass specific .class or .jar files:

1 Open the required make.config file (see “Setting Configuration Options” on
p. 44 for details).

2 At the end of the file, add a group title and group options as in the
following examples:

Example for .class files

Sample file names are shown in bold.

[Preserved Classes]
class1=my.bean1.class
class2=my.bean2.class

Example for .jar files

Sample file names are shown in bold.

[Preserved JavaBeans]
bean1=MyBean1.jar
bean2=MyBean2.jar

U P D A T I N G T H E J D K F I L E P A T H

51
UPDATING THE JDK FILE PATH

If you update or change the location of JDK, then you must update the file
path that was automatically set during the RapidPLUS installation. The
following files are affected:

• make.bat (see below)

• make.config (see “[System]” on p. 49)

• dashogui.bat (see below)

To update the path to JDK in make.bat:

1 In a text editor, open the make.bat file, located in the \\Rapidx\Java folder.

2 Edit the path to JDK.

3 Save and close the file.

Example

Edit the path as necessary for your system (sample shown in bold):

To update the path to JDK in dashogui.bat (for DashO-Pro):

1 In a text editor, open the dashogui.bat file, located in the DashO-Pro folder.

2 Add the path to the Java virtual machine and edit, if necessary, the path to
the Java class library.

3 Save and close the file.

Example

Edit the path as necessary for your system (sample shown in bold):

rem The following line should be changed to match system
configuration

rem !!!
SET JDK13=C:\Java\Jdk1.3

Path to JDK

C:\Java\Jdk1.3\Bin\Java -mx96000000 -classpath
DashoPro.jar;jh.jar;C:\Java\Jdk1.3\JRE\Lib\Rt.jar;DashoProGui

Path to Java virtual machine

Path to Java class library

G E N E R A T I N G C O D E A N D T H E S I M U L A T I O N

52
4 Run dashogui.bat to complete the registration and licensing. You must run
dashogui.bat in order for DashO-Pro to function with the code generation
process.

GENERATING JAVA CODE FROM RAPID CODE

After setting the configuration options for the make process, the next step is
to set code generation preferences for the Rapid application, and then to
finally generate the Java code.

Setting Code Generation Preferences

Set the code generation preferences to designate:

• The output folder for the generated folders and files.

• The batch file (make.bat) to run after code generation.

• The language (Java) for code generation.

To set code generation preferences:

1 In the Application Manager, choose Code Generator|Code Generation
Preferences. The Code Generation Preferences dialog box opens at the
General tab.

2 Under “Source output directory” type in or browse to a folder for the
generated folders and files; use either an absolute path or a path relative to
the location of the Rapid application.

You can enter a folder that does not exist, but not a hierarchy of folders. If
you enter a folder that does not exist, you are prompted to let Rapid create
the folder.

3 Under “Command to run after generation” select the “Run command”
check box and type in or browse to make.bat, located in the \\Rapidx\Java
folder; use either an absolute path or a path relative to the location of the
Rapid application. Be sure to specify the file name and extension.

The command file make.bat runs the Java compiler, builds the distribution
package(s), and launches the viewer(s) according to configuration options
set in make.config (see “Setting Configuration Options” on p. 44).

G E N E R A T I N G J A V A C O D E F R O M R A P I D C O D E

53
4 Under “Language,” select Java from the list.

Your settings should look similar to the following example:

5 Click OK.

❖ NOTE: You do not need to use the other boxes, the Make Default button, nor the
other tabs in the dialog box; these options apply only to C code generation.

Running the Code Generator

❖ NOTE: Simulation applets use DashO-Pro to optimize code. DashO-Pro requires
that you have write permission in the drive (local or network) where the Rapid
application (.rpd) file is located. Without write permission, you will receive a
compilation error.

To generate a stand-alone simulation or simulation applet:

1 In the Application Manager, choose Code Generator|Generate Code. The
Code Generation Status dialog box opens.

2 Select or clear the Show Informational Messages check box. Select to
include informational messages in the message area log; otherwise, only
errors and warnings will be reported in the message area log.

❖ NOTE: The Generate All and Create Size Report Files check boxes apply only
to C code generation.

G E N E R A T I N G C O D E A N D T H E S I M U L A T I O N

54
3 Click the Start button. The code generation process begins.

The status lines track the code generation process. If Show Informational
Messages is selected, notices in the message area follow the progress, too.
Upon successful completion of code generation, the make.bat file runs. A
command window opens and shows the status of the make process as it
compiles Java files, builds packages, and launches viewers. See “Setting
Configuration Options” on p. 44 for details about the make process
options.

❖ NOTES: Do not close the command window until the line “Press any key to
continue...” appears. Press any key to close the window—do not use the
window’s close button, which may cause problems on Windows 98 systems.

If the stand-alone Prototyper window is running, close the Prototyper window
before closing the command window.

4 (Optional) Click the Save button to save messages from the log in a text
file.

Status lines (see “Status
Line Messages” on p. 55) Status bar

Message area
(see Appendix B:
“Errors, Warnings
and Messages”)

Start/Stop button

G E N E R A T I N G J A V A C O D E F R O M R A P I D C O D E

55
Status Line Messages

The status line of the Code Generation Status dialog box displays the current
code generation activity. It can display any of the following messages
(depending on your user objects or application). The order in the table
corresponds to that of the code generation process:

The Code Generation Process

The code generation process consists of three phases:

i. The Code Generator briefly activates the simulation in the Prototyper
window to record the initial state of all graphics in the simulation. This
information is for the image packager (see “Optimizing Image Download”
on p. 57).

S T E P M E S S A G E C O M M E N T S

1 Processing images and fonts —

2 Processing objects —

3 Processing modes —

4 Processing functions —

5 Processing properties —

6 Transforming the logic code From native Rapid syntax into
Java code.

7 Writing Java files The Java source code files are
written to the output folder
specified in the Code Generation
Preferences dialog box.

8 Issuing the command:
make.bat

Executes the command specified
in the Code Generation
Preferences dialog box.

❖ NOTE: This message appears
only after the main application is
generated, and only if there were
no code generation errors.

G E N E R A T I N G C O D E A N D T H E S I M U L A T I O N

56
ii. The Code Generator opens and generates user objects, one after another; it
then opens and generates the main application. The status line and status
bar in the Code Generation Status dialog box track each generation
process separately.

iii. After generating Java code from Rapid code, the batch file make.bat runs a
process that compiles and packages the simulation code and resources,
depending on settings in the make.config file (see “Setting Configuration
Options” on p. 44). The process proceeds as follows:

a. The Java utility make.jar runs.

b. Configuration files are read and processed.

c. Batch files are created in the output folder.

d. The .jlp files are processed.

e. Subfolders are created in the output folder.

f. Web files are copied to the SitePack folder and template parameters
(such as simulation name, height, and width, and the Java package
name of the generated simulation) are replaced by actual values.

g. Scenario files are copied to the SitePack folder. The .html files with
<SCEN_FILEx> and <SCEN_NAMEx> parameters are updated.

h. The resource folder(s) are copied from the application folder and .rar
and .rds files are processed.

i. Generated Java files are compiled.

j. A script file (.dop) for DashO-Pro is automatically created. The script file
contains class and function names to be preserved (according to a
predefined list).

k. DashO-Pro optimizes the code and creates the \\build\out output
folder.

l. The \\build\out folder is compressed by the CabArc utility to produce
the .cab file.

m. The simulation applet is run in the selected environment(s), according
to configuration settings.

n. Unnecessary files are removed.

For details regarding the contents of the code generation output folder, see
Appendix A: “Code Generation Output.”

O P T I M I Z I N G I M A G E D O W N L O A D

57
OPTIMIZING IMAGE DOWNLOAD

Code generation automatically sorts images into download categories. Images
that appear in the initial state of the simulation download first so that the
simulation applet can open and start running, while images that are hidden
in the initial state of the simulation download in the background.

The automatic sorting is not always optimal for initial simulation
performance because Rapid doesn’t know what actions simulation users are
expected to do first. Below is an explanation of the image download
categories, followed by instructions for changing the categories to optimize
the initial performance.

Image Download Categories

Code generation automatically sorts images into one of three download
categories: LOCAL, REMOTE, and BACKGROUND. Each category appears
differently to the simulation user.

LOCAL Download Category

LOCAL images are small (up to 2 KB) .jpg files that appear in the initial state of
the simulation. Because multiple server connections are inefficient for small
files, these images are included with the .jar or .cab file.

• Loading order: First.

• What the simulation user sees: While LOCAL images download,
simulation users see an animation in their Web browser. (To change the
animation, see “Customizing What the User Sees During Download” on
p. 68.)

REMOTE Download Category

REMOTE images are larger .jpg files and all the .gif files that appear in the
initial state of the simulation.

• Loading order: Second.

• What the simulation user sees: While REMOTE images download,
simulation users see a progress bar and the message “Loading simulation,
please wait.”

After REMOTE images finish downloading, simulation users can see and
operate the simulation.

G E N E R A T I N G C O D E A N D T H E S I M U L A T I O N

58
BACKGROUND Download Category

BACKGROUND images are images that are hidden in the initial state of the
simulation.

• Loading order: Third.

• What the simulation user sees: Standard browser indicators may appear
(file names in the status bar, for example), but loading takes place in the
background of the visible, running simulation.

Changing the Download Category

After REMOTE images finish downloading, the simulation user can see and
operate the simulation while BACKGROUND images continue to download. If
initial user actions require a BACKGROUND image that has not finished
downloading, the image will not be visible until its download is complete.
Changing the download category from BACKGROUND to REMOTE can
alleviate this delay.

Example

The initial view of a VCR simulation (called VCR1) shows a large front panel
of the device and a small, blinking remote control. Simulation users are
expected to click the remote control to see an enlarged view of the remote
control, lg_remote.jpg, and use it to operate the device.

During code generation, this image was automatically assigned to
BACKGROUND (since it is initially hidden); you can change the category to
REMOTE for better initial performance.

To change the download category of an image:

1 Open the file <MyApp>_ImagePackager.txt, located in the code generation
output folder.

This file contains three tables of images (LOCAL FILES, REMOTE FILES,
and BACKGROUND FILES) followed by tables of color palette entries for
the different 256-color (or less) .gif palettes in the application.

2 Locate the images that you want to change. You can search by parameters
such as the original name of the image or the Rapid object name.

Example

<BACKGROUND> img_50.jpg 3.84 lg_remote.jpg "lgRemote_Bmp"
"VCR1" NO 0/0

S P L I T T I N G L A R G E F I L E S

59
3 Change only the category word(s) in the angle brackets. Do not move the
image information to another category.

Example

4 Save and close the file.

5 Regenerate the application in Rapid. Changed files automatically move to
their new download category.

❖ NOTE: You can change the loading category of any image; however, most
changes will probably be from BACKGROUND to REMOTE.

SPLITTING LARGE FILES

When a Rapid application generates a .jar file over 1 MB, you may encounter
difficulties compiling the applet or downloading it through Netscape
browsers. One solution may be to split certain .class files within the .jar file.

Code generation creates two user-defined component (UDC) files for the main
Rapid application (.rpd) and for each of its user objects (.udo). Each UDC is a
.class file within the .jar file.

Example

The Rapid application, ABC.rpd contains the user objects ABCu1.udo and
ABCu2.udo. After code generation, opening the archive ABC.jar with a .zip
compatible application program, shows all the applet .class files, including the
following:

UDC_ABC.class
UDC_ABCMode_0.class
UDC_ABCu1.class
UDC_ABCu1Mode_0.class
UDC_ABCu2.class
UDC_ABCu2Mode_0.class

<REMOTE> img_50.jpg 3.84 lg_remote.jpg "lgRemote_Bmp"
"VCR1" NO 0/0

Change category only

G E N E R A T I N G C O D E A N D T H E S I M U L A T I O N

60
The UDC .class files hold the code and logic for the Rapid objects as follows:

• UDC_<MyApp>.class (or UDC_<MyUDO>.class)
These files hold the code for all the Rapid objects used. If one of these files
is larger than 250 KB, you may need to create more user objects. (This is
rarely necessary.)

• UDC_<MyApp>Mode_0.class (or UDC_<MyUDO>Mode_0.class)
These files hold logic for all the modes. If one of these files is large enough
to cause a runtime error, you can split it into two or more files. To split this
file, you must edit the packager file UDC_<MyApp>.pkgr.

To split the UDC_<MyApp>Mode_0.class file (modify the
UDC_<MyApp>.pkgr file):

1 In a text editor, open the UDC_<MyApp>.pkgr file, located in the <MyApp>
subfolder of the Java code generation output folder. It should appear
similar to the following example:

Example

2 Between the headings BEGIN COMPOUND and END COMPOUND, is an
index number (0) and loading category (LOAD_LOCAL). Copy and paste
this line so it appears as in the following example:

Example

** BEGIN COMPOUND **
0 LOAD_LOCAL
0 LOAD_LOCAL
** END COMPOUND **

** BEGIN COMPOUND **
0 LOAD_LOCAL
** END COMPOUND **

** BEGIN MODES **
Operations 0
Operations/standBy0
on/menu 0
menu/idle 0
idle/memory 0
** END MODES **

Index number

Index numberMode name

Loading category

S P L I T T I N G L A R G E F I L E S

61
3 Change the index number of the new line to one (1).

Example

** BEGIN COMPOUND **
0 LOAD_LOCAL
1 LOAD_LOCAL
** END COMPOUND **

4 Under the heading BEGIN MODES, is a list of modes in the simulation
with the index number zero (0). Change the index number of
approximately half the modes to one (1).

Example

** BEGIN MODES **
Operations0
Operations/standBy0
on/menu1
menu/idle1
idle/memory1
** END MODES **

5 Save and close UDC_<MyApp>.pkgr.

6 Regenerate the application in Rapid. The UDC_<MyApp>Mode_0.class file
splits into two files. A file called UDC_<MyApp>Mode_1.java is created for
the new index number. These files contain the generated Java code for the
logic.

You can use the same procedure to split the UDC_<MyApp>Mode_0.class file
into more than two files.

G E N E R A T I N G C O D E A N D T H E S I M U L A T I O N

62
MAKING SIMULATIONS WITHOUT
REGENERATING CODE

After the initial code generation and make process, you can run the make
process again without regenerating code, i.e., outside of the RapidPLUS Web
Studio environment. This is convenient for updates or changes that do not
affect the functionality of the simulation, such as making simulation packages
or linking scenarios to the Scenario Player applet.

Running the Make Process

The make process compiles Java source code, generates simulation packages,
and launches viewers.

To run the make process:

1 Adjust the configuration settings in the make.config file to determine the
type of simulation and package you want to generate (see “Setting
Configuration Options” on p. 44).

2 Run the make.bat file located in the code generation output folder.

For a description of the processes that run through the make.bat file, see “The
Code Generation Process” on p. 55.

Running the Link Process

The link process, which is part of the make process, creates and updates
scenario information in the Scenario Player applet, copies the scenario files to
the SitePack folder, and creates .zip files for scenarios. You can run the link
process as part of the make process, or you can run it separately.

To run the link process through the make process:

1 Create a folder called Scenarios in the code generation output folder. Place
scenario .wav files and the Scenario Authoring Tool’s exported .txt files in
the folder.

2 Run the make.bat file located in the code generation output folder.

To run the link process from the ScenPack folder, see “Distributing
Simulations to Scenario Authors” on p. 69.

63
C H A P T E R 4

Finalizing
Simulations
for Distribution

After you’ve generated and optimized the simulation applet, you should run
and test it.

A simulation can run from a number of different files, with or without the
Scenario Player applet. You can test the simulation applet performance on a
local or network drive, and then test its download time and performance from
a Web server.

After testing, you can distribute simulation packages to a scenario author or a
Web designer simply by sending one of the generated folders.

This chapter presents information about:

• Running and testing generated simulations.

• Adjusting simulation download.

• Distributing and publishing simulations.

F I N A L I Z I N G S I M U L A T I O N S F O R D I S T R I B U T I O N

64
RUNNING GENERATED SIMULATIONS

The code generation process can produce different simulation packages with
different types of simulations. The simulation packages, and the types of
simulations they can contain, are:

• Simulation-only packages, which contains a stand-alone simulation or a
simulation applet.

• Scenario authoring package, which contains a simulation applet with
the Scenario Player applet.

• FEP CD package, which contains a simulation applet that requires FEP
browser support.

For details about the different packages and types of simulations, see
“Simulations and Simulation Packages” on p. 6. For details about setting the
code generation options, see “[Make Targets]” on p. 45.

❖ NOTE: Files for the Scenario Player applet are generated whenever a simulation
applet is generated, however, the Scenario Player applet is hidden in simulation-
only packages.

You can run simulations for various reasons, including testing simulation
functionality or viewing the simulation with scenarios. The package(s) you
generate and your reasons for running a simulation determine which file you
run. The following sections describe these files and explain how to run them.

Testing Functionality of Stand-Alone Simulations

To test simulation functionality in a Java or Java-like environment, there are
two different .bat files that you can generate and launch relatively quickly:

• runStandAlone.bat

• runApplet.bat

R U N N I N G G E N E R A T E D S I M U L A T I O N S

65
Selecting the File to Run

You can run the simulation from the runStandAlone.bat file and/or the
runApplet.bat file. The procedure for running the simulation follows the
descriptions.

runStandAlone.bat

This file is for testing the application without generating a simulation applet.
Because there is no applet, the make process finishes quickly.

runApplet.bat

This file is used for testing the simulation applet without using a Web
browser.

Running the Simulation

To run a simulation for functionality testing:

1 Locate the file for the type of simulation you want to run:

• The runStandAlone.bat file in the StandAlone folder of the code
generation output.

• The runApplet.bat file in the root folder of the code generation output.

2 Run the selected file.

L O C A T I O N V I E W E R D E S C R I P T I O N

StandAlone folder
of the code
generation output.

Stand-alone
Prototyper.

Runs on an application
developer’s computer
(i.e., a computer with the
\\Rapidx\Java folder).

L O C A T I O N V I E W E R D E S C R I P T I O N

Root folder of the
code generation
output.

Java applet viewer. Runs the simulation applet
in the separate viewer
window.

F I N A L I Z I N G S I M U L A T I O N S F O R D I S T R I B U T I O N

66
Viewing Simulation Applets in a Web Browser

You can open a simulation applet (and the Scenario Player applet) in a Web
browser from one of four .html files. The file demo_sim.html is used for viewing
only the simulation; the other files are used for viewing the simulation with
different kinds of scenarios.

Installing FEP Browser Support

If the Rapid application includes an FEP object, and you generated an FEP CD
package, simulation users must install FEP browser support on their machines.

Simply run the file FepInstall.exe, located in the \\CdPack\install subfolder of
the code generation output folder.

Selecting an .html File to Run

All the .html files are all located in the SitePack subfolder (or
\\ScenPack\SitePack subfolder) of the code generation output folder.

The following table describes the .html files. Procedures for running the
simulation applets follow the descriptions.

F I L E D E S C R I P T I O N

demo_sim.html This file is used to run only the simulation
applet.

The Scenario Player applet is launched—but is
hidden.

demo_player.html This file is used to run the simulation applet and
the Scenario Player applet.

The Web page is arranged in an HTML TABLE
element.

R U N N I N G G E N E R A T E D S I M U L A T I O N S

67
For more details about the content of each .html file, see Appendix A: “Code
Generation Output.”

Looking at the code: ways to run applets

Relevant .html files can run the simulation applet (and the Scenario Player
applet) in one of two ways:

• By the rapid_applet and player_applet JavaScript functions.

• By the .html element APPLET (one for each applet).

The JavaScript functions (called from the .html files and defined in the
appletutilslf2.js file) dynamically build the APPLET elements in a Web
browser during runtime; these functions are used by default.

Commented-out APPLET elements appear in the .html files as samples,
in case you want to launch the applets directly from the .html file.

❖ NOTE: Both the JavaScript functions and the sample APPLET elements use
parameters that are automatically updated during the make process. For a
description of these simulation and scenario parameters, see Appendix A:
“Code Generation Output.”

demo_playerviewnew.html This file is used to run the simulation applet and
the Scenario Player applet with the JavaScript
user interface (see Appendix C: “JavaScript User
Interface for Scenarios”).

The Web page is arranged using HTML
FRAMESET elements.

❖ NOTE: This file is for demonstration purposes;
it is not a supported interface.

demo_playerviewold.html This file is used to run the simulation applet and
the Scenario Player applet with the JavaScript
user interface for scenarios that only use
simulation prompts (see Appendix C:
“JavaScript User Interface for Scenarios”).

The Web page is arranged using HTML
FRAMESET elements.

F I L E D E S C R I P T I O N

F I N A L I Z I N G S I M U L A T I O N S F O R D I S T R I B U T I O N

68
ADJUSTING SIMULATION DOWNLOAD

If the simulation will be distributed over the Web, it would be prudent to time
the simulation download and test its performance over a dial-up modem
connection. By adjusting certain aspects of the simulation or the generated
files, you can optimize the simulation download, and thus enhance the
simulation user’s experience.

Changing the Download Rate

If, after testing the download rate, you want to further optimize the
simulation, refer to the following sections:

• “Working with Graphic Files” on p. 19.

• “Working with Audio Files” on p. 22.

• “Using Native and Nonnative Fonts” on p. 26.

• “Optimizing Rapid Logic” on p. 29.

• “Optimizing Image Download” on p. 57.

• “Splitting Large Files” on p. 59.

Customizing What the User Sees During Download

You can customize what the simulation user sees during the initial download
to suit the look and feel of the product or Web site. You can use an image, an
animated image, text, or other Web medium (e.g., a Macromedia® Flash™
movie).

By default, the generated file demo_player.html uses wait.gif, an animated
image that appears in the Web browser during the download of the .jar or
.cab file.

To change what the user sees during download:

1 In a text editor, open demo_player.html.

To make a global change: open demo_player.html located in the
\\Rapidx\Java\HTML folder. This change affects every simulation
generated from Rapid.

To make a local change: open demo_player.html located in the generated
SitePack folder. This change affects the current simulation only and will be

D I S T R I B U T I N G S I M U L A T I O N S (P U B L I S H I N G)

69
overwritten the next time the simulation is generated from the Rapid
application.

2 Find the JavaScript that is labeled with the comment “Code for loading
animation” and update as required.

DISTRIBUTING SIMULATIONS (PUBLISHING)

When you generate simulation applets, you can also generate simulation
distribution packages for scenario authors and Web designers.

Distributing Simulations to Web Designers

When you generate a simulation applet, the make process automatically
creates a SitePack subfolder in the code generation output folder. The SitePack
folder contains only the files needed to run simulations from a Web server.

Send the SitePack folder to the Web designer. The Web designer should put
the SitePack folder on the Web server, and link to (or otherwise incorporate)
the appropriate .html file. For details regarding the different kinds of .html
files, see “Running Generated Simulations” on p. 64.

Distributing Simulations to Scenario Authors

When the simulation applet is part of a multimedia presentation that includes
scenarios, the scenario author will need to work with the simulation in the
Scenario Authoring Tool.

Send the ScenPack folder to the scenario author. After creating scenarios, the
scenario author will link them to the simulation (using the utility file link.bat,
included in the ScenPack folder) and send the Web designer the
\\ScenPack\SitePack folder. For details regarding creating and linking
scenarios, refer to the manual Using the Scenario Authoring Tool.

F I N A L I Z I N G S I M U L A T I O N S F O R D I S T R I B U T I O N

70
About the SitePack and \\ScenPack\SitePack folders

The code generation output folder includes a SitePack subfolder (for Web
designers) and a ScenPack subfolder (for scenario authors). The ScenPack
folder includes a copy of the SitePack folder.

After creating scenarios and linking them to the simulation, the Web
designer should receive this copy of the SitePack folder—which contains
the scenarios—to put on the Web server.

Updating the Simulation While Scenarios are Being Developed

You can continue adjusting or updating the simulation after work on the
scenarios has begun. In that case, you will have to update the scenario
package and send a new copy of the ScenPack folder to the scenario author.

To update a simulation after work on scenarios has begun:

1 Regenerate the simulation applet with a ScenPack folder (see “[Make
Targets]” on p. 45).

2 Send the ScenPack folder to the scenario author.

Before playing scenarios, the scenario author must copy their own
\\ScenPack\Scenarios subfolder to the updated ScenPack folder. Then the
scenario author must re-export and re-link scenarios.

Creating CD-ROMs for Macintosh Computers

When using an IBM-compatible computer (PC) to create a CD-ROM for
Macintosh computers, file names longer than eight characters are truncated,
rendering the files unusable on a Macintosh computer. You must use
Macintosh-compatible software to make CD-ROM images.

71
C H A P T E R 5

Developing the
Scenario Player
Applet

A simulation applet can be combined with scenarios to create a multimedia
presentation of a product. Scenarios integrate simulation actions (such as
button presses and changing views) with text, sound, and visual aids.
Scenarios are produced with e-SIM’s Scenario Authoring Tool. They run
in a separate applet called the Scenario Player applet.

The Scenario Player applet
controls the appearance and
behavior of scenarios. It
communicates with the simulation
applet and the Web browser or
applet viewer via its API.

Similar to simulation applets, the
Scenario Player applet is generated
from a Rapid application. The main
difference in the development
cycles of these two applets is that the Scenario Player applet is usually
developed once for an entire Web site or suite of products, while a new
simulation applet must be developed for each product.

Creating the Scenario Player applet and integrating it with a simulation applet
consists of three phases:

1 Building the Scenario Player application in Rapid.
The Scenario Player applet is generated from a specialized Rapid
application that contains one or more user objects (.udo files) that are

WEB BROWSER

Scenario
Player applet

Simulation
applet

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

72
supplied with RapidPLUS Web Studio. Each user object governs a specific
aspect of the Scenario Player applet’s functionality or appearance.

Because the Scenario Player applet is generated from a Rapid application,
its user interface is as flexible and adaptable as any other Rapid application
built for Java code generation.

2 Generating Java code to create the Scenario Player applet.
After the Scenario Player application has been built, Java code is generated.
This code will be used to build the Scenario Player applet when the
simulation applet is built.

3 Linking a simulation applet to the Scenario Player applet.
In order to link the simulation applet with the Scenario Player applet,
the simulation’s make.config file must be modified to specify a path to the
Scenario Player applet. When the simulation applet is generated and
compiled, the Scenario Player applet is included in the code generation
output.

An additional file, scenariotemplate.txt, defines the appearance of visual aids
that appear in the simulation applet while a scenario is running.

This chapter presents:

• Information about building the Scenario Player application.

• The user objects that are added to the application and their API.

• Steps for creating and modifying the Scenario Player applet’s GUI.

• How to generate the Scenario Player applet.

• How to modify indicators and demonstrators.

❖ NOTE: For details about scenario objects and creating scenarios, refer to the
manual, Using the Scenario Authoring Tool.

B U I L D I N G T H E S C E N A R I O P L A Y E R A P P L I C A T I O N

73
BUILDING THE SCENARIO PLAYER
APPLICATION

You can customize the appearance of the Scenario Player applet to visually
complement the style of your product or company. You can also design the
functionality of the Scenario Player applet in order to control the degree of
interaction with the user, with the Web browser or applet viewer, and with the
simulation applet.

For example, you can use custom fonts, arrange the presentation of scenario
lists and text prompts, add images or rich media content, and control user
interaction with the scenarios.

What you see in the Rapid Prototyper while building the Scenario Player
application is different, though, from what you will see in the Web browser.
This is because the content—such as scenario titles and prompt text—is not
available until the Scenario Player applet is combined with a simulation
applet, linked to scenarios, and opened in a Web browser. Therefore, you must
keep the final product—the Scenario Player applet—in mind as you build its
application.

This section presents a brief description of the building blocks for the Scenario
Player application and contains usage examples of the Scenario Player applet.

Scenario Player Building Blocks

A Scenario Player application must contain certain elements:

• Graphic objects such as text displays, buttons, and images
These objects allow users to navigate scenarios, view scenario content,
control playback, and determine volume level. They also present the
“look” of the Scenario Player applet.

• ScenarioPlayer_Manager.udo
Through this user object, the Scenario Player applet controls the
functionality of the scenarios (e.g., play, pause, stop) and receives
information from the simulation applet.

• ScenarioPlayerUI_Agent.udo
Through this user object, the Scenario Player applet processes information
about scenario prompts and Supplemental Content files.

• Nongraphic objects such as arrays, data stores, and strings
These objects hold scenario information that is used by the main
application and the user objects.

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

74
Optionally, the application can contain additional elements:

• AppletContext_Manager.udo
Through this user object, the Scenario Player applet communicates with
the Web browser/applet viewer.

• Simulation_Agent.udo
Through this user object, the Scenario Player applet manipulates the
simulation applet and obtains information about actions performed by
the user on the simulation applet.

• Players for Supplemental Content files
Supplemental Content files are external media, such as a Flash movie or
an animated .gif, that can be used to enhance scenarios. In order for them
to play in the scenarios, their players must be added to the application.

Scenario Player Usage Examples

The following examples present a typical Scenario Player applet, and give
a brief description of Rapid objects that control the applet’s appearance and
functionality.

The scenarios in these examples use a hierarchy of group headings and steps.
A group heading is a high-level topic, under which a number of scenarios can
be organized. A step is a division of a scenario, such as one part of a procedure
or a specific feature of the device. For more information on organizing
scenarios under group headings and by steps, refer to the Using the Scenario
Authoring Tool manual.

Example 1: Scenarios running in the navigation area

After opening this sample Scenario Player applet in a Web browser, the user
sees the following elements:

B U I L D I N G T H E S C E N A R I O P L A Y E R A P P L I C A T I O N

75
� The navigation area displays the available scenarios. In this example, there
are five visible group headings. Related scenarios are arranged under each
heading.

Scenario links are hyperlinks that display scenario titles and allow users to
select the various scenarios. Clicking a link selects a scenario and displays
its steps (see Example 2 for a sample of a selected scenario).

• The group headings and scenario links are displayed in separate display
objects. In this example, text widget JavaBeans are used, but text
display and graphic display objects could be used.

• Text for group headings and scenario links come from the exported file
scenarios.txt.

• The scenarios.txt file is loaded to the application using the
loadScenariosStructure: function of ScenarioPlayer_Manager.udo.

� Add scroll buttons or a scroll bar to allow users to move through the
scenario list.

� The scenario volume can be changed by users. The setVolume: function of
ScenarioPlayer_Manager.udo controls this feature.

� A background image can be added to the main application to provide
visual interest, a company logo, or other visual information.

�Background image

�Navigation area:
group headings for
scenarios

�Navigation area:
scenario links

�Scroll button

�Volume control

�Scroll button

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

76
Example 2: A scenario’s steps displayed in the navigation area

After clicking a scenario link, the user sees the following elements:

� Back button, which when clicked, returns to the list of scenarios.

� Step names for the selected scenario. The text for step names is entered in
the Scenario Authoring Tool. Each step name is a hyperlink that starts
playback at a specific point in the scenario.

• The step name comes from the exported scenario file
<MyScenario>_prompt.txt.

• The scenario step names are loaded using the getScenarioSteps: function
of ScenarioPlayer_Manager.udo.

• The playStep: function of ScenarioPlayer_Manager.udo is used to set the
scenario conditions for that step and to start playing the scenario.

� A bitmap is used to provide the image for bullets.

� The scenario title is displayed in a display object. In this example, a text
widget JavaBean is used.

�Back button

�Scenario step
names

�Bullets

�Scenario title

B U I L D I N G T H E S C E N A R I O P L A Y E R A P P L I C A T I O N

77
Example 3: Scenario playback in the navigation area

While the scenario plays, the user sees these elements:

� The step that is currently playing is highlighted.

• A filled frame is used to highlight the active step name.

• A user function determines the location of the frame.

� The scenario controls (buttons) allow the user to pause or stop the
scenario, using the pause and stop functions of ScenarioPlayer_Manager.udo.

� Text prompts provide an onscreen narration for the actions that occur on
the simulation.

• Text prompts are added in the Scenario Authoring Tool (in this case, as
list prompts) and their contents are added to the exported scenario file
<MyScenario>_prompt.txt.

• Text is obtained via the promptText property of
ScenarioPlayerUI_Agent.udo.

• The text for the first prompt is displayed when the event firstPrompt-
Event occurs. The text changes each time the event normalPromptEvent
occurs. The text for the last prompt is displayed when the event
lastPromptEvent occurs. All of the events are available in
ScenarioPlayerUI_Agent.udo.

�Active scenario
step

�Text prompt

�Progress bar

�Scenario controls

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

78
� The progress bar informs the user how much of the scenario has already
played.

• In this example, a user object controls the display of the progress bar.

• The getScenarioProgress function of ScenarioPlayer_Manager.udo is used to
obtain the progress value.

GENERATING CODE TO CREATE THE
SCENARIO PLAYER APPLET

Generating Java code for the Scenario Player applet is similar to generating
code for simulation applets. For details about the code generation dialog
boxes, see “Generating Java Code from Rapid Code” on p. 52.

To generate code from the Scenario Player application:

1 In the Code Generation Preferences dialog box:

• Under “Source output directory” type in or browse to a folder for the
generated folders and files; use either an absolute path or a path
relative to the location of the application.

You can enter one folder that does not exist, but not a hierarchy of
folders. If you enter a folder that does not exist, you are prompted to let
Rapid create the folder.

• Under “Command to run after generation” select the “Run command”
check box and type in or browse to makePlayer.bat, located in the
\\Rapidx\Java folder; use either an absolute path or a path relative to
the location of the application. Be sure to specify the file name and
extension.

• Under “Language,” select Java from the list.

❖ NOTE: You do not need to use the other boxes, the Make Default button, nor
the other tabs in the dialog box; they apply to C code generation.

2 In the Code Generation Status dialog box, click the Start button.

The status lines track the code generation process. If Show Informational
Messages is selected, notices in the message area follow the progress, too.
For an explanation about the status line messages, see p. 55.

T H E U S E R O B J E C T S ’ A P I

79
3 (Optional) Click the Save button to save messages from the log in a text
file.

Once the Scenario Player applet is complete, you must package it with the
simulation applet.

To package the Scenario Player applet with the simulation applet:

1 Generate the Scenario Player applet.

2 Edit the make.config file to include the path of the generated Scenario
Player applet. See “[Make Options]” on p. 47 for details.

3 Generate the simulation applet as usual. Be sure to specify make.bat as the
file to run in the Code Generation Preferences dialog box. See “Generating
Java Code from Rapid Code” on p. 52 for details.

THE USER OBJECTS’ API

This section presents the API for the Scenario Player application’s user objects:

• ScenarioPlayer_Manager.udo

• ScenarioPlayerUI_Agent.udo

• AppletContext_Manager.udo

• Simulation_Agent.udo

ScenarioPlayer_Manager.udo Reference

This user object controls scenario operations, including:

• Playback control.

• Volume control.

• Scenario structure display information.

• Simulation status during playback.

The available API is described in the following tables.

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

80
Functions of ScenarioPlayer_Manager.udo

This user object has one property, self.

F U N C T I O N D E S C R I P T I O N

allowFreePlayWhile
Paused: <Integer>

Enables (1) or disables (0) user interaction with the
simulation when scenario playback is paused.
When scenario playback resumes, the simulation
returns to the state at which it was paused.

Parameters: 0 (by default) or 1.

disableSimulation Disables user interaction with the simulation. This
function is particularly useful when you want the
simulation to remain disabled after the scenario
ends.

Example
The end of one scenario uses the disableSimulation
function. The simulation user is asked to play
another scenario that continues where the first one
left off. The next scenario continues, without a
need to account for user actions.

enableSimulation Enables user interaction with the simulation.

getBufferingProgress Returns the percentage of the voice-over data buffer
that is already filled.

Return value: a number in the range of 0–100.

getScenarioProgress Returns the percentage of the total length of time
that the scenario has already played.

Return value: a number in the range of 0–100.

getScenarioSteps:
'<String>'

Returns a list of step names from the named
scenario.

Parameter: a string; the name of the scenario file.

Return value: a one-dimensional string array.

getVolume Returns the level of the voice-over volume.

Return value: a number in the range of 0–1.

T H E U S E R O B J E C T S ’ A P I

81
loadScenario: '<String>' Loads the specified scenario, ready for playback.

Parameter: a string; the name of the scenario file.

loadScenariosStructure:
<Data_Store>

Loads the scenario structure display information for
group headings.

Parameters: a data store with the following fields
(read at runtime from the file scenarios.txt, located
in the SitePack subfolder).

• name: a string record that contains the name of
the scenario or folder.

• level: an integer record that specifies the nesting
level of the scenario or folder (1=top level).

• folder: an integer record that specifies whether
this record describes a scenario name (0) or a
folder name (1).

• file: a string record that contains the name of
the scenario script file (only meaningful when
the value of “folder” is 0).

• numbered: an integer record that specifies
whether the scenario is numbered (1) or
bulleted (0) (only meaningful when the value
of “folder” is 0).

See the following example.

F U N C T I O N D E S C R I P T I O N

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

82
Example
The content of scenarioStructure_DS is dynamically
filled in at runtime (as shown in the Inspector):

The scenario structure would appear in the Web
browser as follows:

muteSimulationSound:
<Integer>

Mutes (1) or unmutes (0) the simulation sound.

Parameters: 0 (by default) or 1.

pause Pauses the scenario playback.

pauseAfterEachStep:
<Integer>

Pauses (1) the scenario at the completion of each
scenario step, or continues (0) and plays straight
through the scenario.

Parameters: 0 (by default) or 1.

play: '<String>' Restarts the simulation applet and plays the
specified scenario from the beginning.

Parameter: a string; the name of the scenario file.

F U N C T I O N D E S C R I P T I O N

T H E U S E R O B J E C T S ’ A P I

83
playStep: <Integer> Plays the specified step of the loaded scenario. See
“Playing a Scenario from a Specific Step” on p. 84.

Parameters: an integer; a step number greater than
or equal to zero (0).

playWithoutRestart:
'<String>'

Plays the specified scenario without restarting the
simulation.

Parameter: a string; the name of the scenario file.

restartSimulation Restarts the simulation applet.

resume Resumes the scenario playback after it was paused.

setSimulationVolume:
<Number>

Sets the simulation applet volume to the specified
level.

Parameter: a number in the range of 0–1.

setVolume: <Number> Sets the voice-over volume to the specified level.

Parameter: a number in the range of 0–1.

setWaitCursor:
<Cursor>

Sets the wait cursor image to the specified cursor.

Parameter: a system cursor.

Example
ScenarioPlayer_Manager setWaitCursor: Arrow

showPromptsWhile
Skipping: <Integer>

Shows (1) or hides (0) list prompts between steps
when steps are skipped. When set to 1, text
prompts appear quickly until arriving at the
selected step. When set to 0, the text prompts,
narration, and simulation all start together at the
selected step.

Parameters: 0 (by default) or 1.

stop Stops scenario playback.

F U N C T I O N D E S C R I P T I O N

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

84
Playing a Scenario from a Specific Step

The playStep: function, from the ScenarioPlayer_Manager.udo, controls the
Scenario Player applet in the following way:

• Suspends the simulation graphics.

• Sets the internal clock of the simulation (the clock that sends timer ticks
and other timing events) to run 50 times faster than normal.

• Starts the scenario, which triggers the event scenarioStartEvent.

• Plays the simulation actions in fast-forward speed while keeping the
simulation graphics and voice-over suspended.

Upon reaching the selected step, the simulation clock is set back to normal,
the graphics are enabled, and the voice-over begins to play.

Timing issues with scenario steps

Changing the simulation applet’s internal clock to run 50 times faster
causes the clock resolution to change: every one millisecond is now
equivalent to 50 milliseconds in the normal

This means that time periods shorter than 50 milliseconds are less
accurate. The effect is compounded by the fact that the resolution of the
system clock is between 10 and 50 milliseconds, so that after multiplying
by a factor of 50, the clock resolution is equivalent to 500–2500
milliseconds.

Different platforms, browsers, and connection rates can present difficulties
with the fast simulation rate. Inconsistent timing issues can usually be
addressed in the Scenario Authoring Tool. Refer to the manual Using the
Scenario Authoring Tool for more information about scenario timing.

T H E U S E R O B J E C T S ’ A P I

85
Events of ScenarioPlayer_Manager.udo

Example

The schematic diagram below shows the sequence in which seven events are
triggered when a scenario is started from an intermediate step with the
playStep: function. Note that:

• The event scenarioStartEvent triggers actions such as restarting the
simulation applet and, in this case, freezing the simulation image while
simulation actions begin to fast forward.

• The event startedEvent triggers playback to begin at the selected step.

E V E N T D E S C R I P T I O N

bufferingEndEvent Triggered when the scenario voice-over buffering
process ends.

bufferingProgress
UpdateEvent

Triggered when the scenario voice-over buffering
progress has been changed.

bufferingStartEvent Triggered when the scenario voice-over buffering
process begins.

pausedEvent Triggered when scenario playback is paused.

resumedEvent Triggered when scenario playback is resumed.

scenarioEndEvent Triggered when the final scenario command is run.

scenarioProgressUpdate
Event

Triggered when the scenario playback progress (a
percentage of the total time) has been changes.

scenarioStartEvent Triggered when the first scenario command is run.

startedEvent Triggered when playback begins (anywhere in the
scenario).

stoppedEvent Triggered when playback stops (anywhere in the
scenario).

playStep: bufferingStartEvent

bufferingProgressUpdateEvent

bufferingEndEvent scenarioStartEvent startedEvent

scenarioProgressUpdateEvent

scenarioEndEvent

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

86
ScenarioPlayerUI_Agent.udo Reference

This user object manages the timing and content of (List) Prompts and
Supplemental Content. List Prompts present the onscreen narration that
guides simulation users through a scenario. They appear in the Scenario Player
applet. Each List Prompt has text, a step number, and a sub-step number.

Supplemental Content segments can be used to enhance scenarios. In general,
the supplemental content will be some external media, such as a Flash movie
or an animated .gif file. A portion of the file will play at a specified point in
the scenario.

The timing for playing the file is defined in the Scenario Authoring Tool.
However, the Supplemental Content does not always require an external file.
For example, the enhancement could be a change to the Scenario Player
applet display that occurs for a specified amount of time.

The available API is described in the following tables.

Properties of ScenarioPlayerUI_Agent.udo

P R O P E R T Y D E S C R I P T I O N

promptStep Holds the step number of the prompt that is
displayed when any one of the prompt events is
triggered.

Parameter: an integer; a step number greater than
or equal to 0.

promptStyle Holds the style name of the prompt that is
displayed when any one of the prompt events is
triggered. The prompt style must correspond to a
style name exported by the Scenario Authoring
Tool.

A prompt style generally refers to a group of
characteristics such as background color, border
color, and font.

Parameter: a string; a prompt style name.

T H E U S E R O B J E C T S ’ A P I

87
promptSubStep Holds the sub-step number of the prompt that is
displayed when any one of the prompt events is
triggered.

Parameter: an integer; a sub-step number greater
than or equal to 1.

promptText Holds the text string of the prompt that is displayed
when any one of the prompt events is triggered.

Parameter: a string; the prompt text.

supplementalContent
End

Holds the value at which to end the Supplemental
Content segment, usually before it reaches the
end of the file. The value is an integer that is
meaningful to the content type, such as
milliseconds, frame number, array index, etc. This
property’s value is only accurate when or after the
supplementalContentStartEvent is triggered.

supplementalContent
File

Holds the name of the Supplemental Content file to
be played when the supplementalContentLoadEvent is
triggered.

Parameter: a string; a file name.

Example
ScenarioPlayerUI_Agent.supplementalContentFile :=
'music.swf'

supplementalContent
Start

Holds the value to start the Supplemental Content
segment, usually after the beginning of the file. The
value is an integer that is meaningful to the content
type, such as the time, frame number, array index,
etc. This property’s value is only accurate when or
after the supplementalContentStartEvent is triggered.

P R O P E R T Y D E S C R I P T I O N

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

88
supplementalContent
Type

Holds the file type of the Supplemental Content file
to be played when the
supplementalContentLoadEvent is triggered.

Example
In this example, MyPlayer is the name of the
Scenario Player application. PlayFlashMovie: and
PlayAnimatedGIF: are user functions.

if ScenarioPlayerUI_Agent.supplementalContentType =
'FLASH'
 MyPlayer PlayFlashMovie:
 scenarioPlayerUI_agent.supplementalContentFile
 := 'logo.swf'
else if scenarioPlayerUI_agent.supplementalContentType
 = 'GIF'
 MyPlayer PlayAnimatedGIF:
 scenarioPlayerUI_agent.supplementalContentFile
 := 'logo.gif'

P R O P E R T Y D E S C R I P T I O N

T H E U S E R O B J E C T S ’ A P I

89
Events of ScenarioPlayerUI_Agent.udo

E V E N T D E S C R I P T I O N

errorPromptEvent Triggered when an error occurs. The promptText
property contains the error message to be displayed.

firstPromptEvent Triggered when the first prompt should be
displayed. The promptText property contains the
text that will be displayed.

❖ NOTE: The step number for the first prompt is
always 0. The first prompt is often used as an
introduction to the scenario.

lastPromptEvent Triggered when the last prompt in the scenario
should be displayed. The promptText property
contains the text that will be displayed.

normalPromptEvent Triggered when a prompt should be displayed. The
promptText property contains the text that will be
displayed. This event does not apply to the first and
last prompts.

supplementalContent
EndEvent

Triggered when a Supplemental Content segment is
ended.

supplementalContent
LoadEvent

Triggered when the Supplemental Content file is
loaded and ready to play.

supplementalContent
StartEvent

Triggered when a Supplemental Content segment is
started.

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

90
AppletContext_Manager.udo Reference

This user object implements communication between the Scenario Player
applet and the Web browser/applet viewer through JavaScript. With these
functions, events, and properties, information that is entered through the
.html files can be read dynamically by the Scenario Player applet. The original
.html files used for code generation are located in the \\Rapidx\Java\HTML
folder.

The available API is described in the following tables.

Events of AppletContext_Manager.udo

Properties of AppletContext_Manager.udo

These properties use information received from the user object’s externalCall
event.

E V E N T D E S C R I P T I O N

externalCall Triggered when an external JavaScript function calls
the simulation applet. (An example can be found in
the callPlayer function of the appletutilslf2.js
file.) The JavaScript call should be formatted as:

rapid_applet.javascriptNotify ('Player',
functionName, params);

where rapid_applet is the name of the
simulation applet in JavaScript and functionName
and params are two string arguments to be passed
to the Scenario Player applet.

P R O P E R T Y D E S C R I P T I O N

externalCallFunction Holds the value of the “functionName” parameter.

externalCallParams Holds the value of the “params” parameter.

T H E U S E R O B J E C T S ’ A P I

91
Functions of AppletContext_Manager.udo

F U N C T I O N D E S C R I P T I O N

callJavaScriptFunction:
'<String>' with:
<String_Array>

Calls the specified JavaScript function with the
specified parameters.

Parameters:

<String> the name of a JavaScript function.
<String_Array> an array of strings that contains
parameters for the JavaScript function.

Example
AppletContext_Manager callJavaScriptFunction:
'showMessage' with: MessageInfo_Array
where MessageInfo_Array is a string array with two
strings: the message title and message text.

getParameter:
'<String>'

Returns the value attribute of a PARAM element
(which is in the content of an HTML APPLET
element).

Parameter: a string; the name attribute in a PARAM
element.

Return value: a string; the value attribute.

Example
AppletContext_Manager getParameter 'bkgrdColor'
returns the value “00FF00” (shown in bold below)
where the markup appears similar to the following:

<APPLET name="player_MyPlayer" ... >
<PARAM name="CABBASE"
value="MyPlayer_player.cab">
<PARAM name="bkgrdColor"
value="00FF00"> ...

</APPLET>

❖ NOTE: You can add PARAM elements to the
APPLET element in the .html files, and then
incorporate their attribute values into the design of
the Scenario Player applet. This enables control over
specified characteristics outside the Scenario Player
applet, so that changes can be made for a Web site
or for a single Scenario Player applet.

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

92
showDocument:
'<String>' in: '<String>'

Used to display the specified document in the
specified target window or frame.

Parameters:

First string: a URL.

Second string: a target window or frame. The target
should be one of the following strings:

• _self: show the document in the window and
frame that contains the Scenario Player applet.

• _parent: show the document in the applet’s
parent frame. If the applet’s frame has no parent
frame, acts like “_self.”

• _top: show the document in the top-level frame
of the applet's window. If the applet’s frame is
the top-level frame, acts like “_self.”

• _blank: show the document in a new, unnamed
top-level window.

• name: show the document in a frame or
window named “name.” If a target named
“name” does not already exist, a new top-level
window with the specified name is created and
the document is shown there.

Example
AppletContext_Manager showDocument:
'www.e-sim.com' in: '_parent'

writeInStatusBar:
'<String>'

Writes the specified string in the status bar of the
Web browser/applet viewer.

Parameter: a string.

Example
AppletContext_Manager writeInStatusBar: 'Loading...'

F U N C T I O N D E S C R I P T I O N

T H E U S E R O B J E C T S ’ A P I

93
Simulation_Agent.udo Reference

This user object implements interface for the Scenario Player applet to obtain
information from the simulation applet, and to send actions to the simulation
applet. The Scenario Player applet can exchange information about
simulation actions with the simulation applet. (In the Scenario Authoring
Tool these actions are referred to as “sim-events.”) This user object is
particularly useful for computer-based training (CBT).

The available API is described in the following tables.

Properties of Simulation_Agent.udo

The properties’ values are obtained from the scenario .zip files.

P R O P E R T Y D E S C R I P T I O N

actionObject Holds the name of the simulation object on which
a user action was performed.

actionType Holds the type of action that was performed.

Parameters: a string that uses one of the following
values:

‘action’: indicates that the simulation object’s
state was changed, e.g., mousePressedEvent.
‘object’: indicates that the simulation object’s
state was not changed, e.g., mouseEnteredEvent.

actionValue Holds a string containing information about the
user action, such as mouse coordinates or button
pressed or released.

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

94
Functions of Simulation_Agent.udo

Events of Simulation_Agent.udo

F U N C T I O N D E S C R I P T I O N

perform: '<String>' Performs the specified event/command on the
simulation applet.

Parameters: a string; a command (as from a
scenario script).

Return values: target and value.

Example
Simulation_Agent perform: '<SIMEVENT
target='obj_onOff_pb' value='Pressed' />'

setMonitorMode Sets action routing to normal mode in which
simulation-user actions are sent from the
simulation applet to the Scenario Player applet and
the actions are performed. This mode is the default
mode.

setRerouteMode Sets action routing to reroute mode in which events
are sent from the simulation applet to the Scenario
Player applet but are not performed.

E V E N T D E S C R I P T I O N

actionOutEvent Triggered each time a user action is performed on
the simulation applet.

W O R K I N G W I T H I N D I C A T O R S A N D D E M O N S T R A T O R S

95
WORKING WITH INDICATORS AND
DEMONSTRATORS

Indicators and demonstrators are visual aids that focus a scenario user’s
attention on objects and actions in the simulation applet. The appearances of
these visual aids are defined in the scenariotemplate.txt file, an XML-content
file that is read by the Scenario Player applet while a scenario runs.

Indicators frame an area of interest during a scenario. In the
Scenario Authoring Tool, the scenario author defines whether the
frame zooms in on the object, blinks, or remains steady.

Demonstrators bring attention to actions taking place during a
scenario. In the Scenario Authoring Tool, the scenario author uses a
single demonstrator to highlight a single action, or links several
demonstrators together to trace a path of actions.

You can modify the scenariotemplate.txt file so that the appearance of
indicators and demonstrators will suit the style of your product and Web site.

❖ NOTE: The scenariotemplate.txt file may contain elements unrelated to
indicators and demonstrators for the sake of backwards compatibility.

Making Global or Local Changes

You can change the appearance of the default indicators and demonstrators
by modifying scenariotemplate.txt and its referenced image files. Global
changes ensure a uniform look among the indicators and demonstrators of an
entire group of Scenario Player applets; a local change provides a distinctive
look for a specific Scenario Player applet.

Making Global Changes Before Code Generation

A scenariotemplate.txt file and referenced image files are located in the
\\Rapidx\Java\HTML folder. These files determine the appearance of
indicators and demonstrators for every generated scenario authoring package.
To change the look globally, modify this scenariotemplate.txt file and these
images. The changes will apply to all newly generated scenario authoring
packages.

❖ NOTE: Save a backup copy of the \\Rapidx\Java\HTML folder before changing
any part of it.

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

96
Making Global Changes for a Web Site

You can direct many Scenario Player applets to read from the same
scenariotemplate.txt file if it is located in a common folder on the Web server.
(See “The Rapid Application Library” on p. 123 for an example on how to
direct the Scenario Player applet to a common URL.) In this case, a single
scenariotemplate.txt file can be easily updated for current use.

❖ NOTE: If you use a common URL, remove scenariotemplate.txt and its
referenced image files from the SitePack folder.

Example

A new marketing strategy changes the color scheme on your company’s Web
site. You can easily coordinate the colors for indicators and demonstrators in
the single scenariotemplate.txt file and its referenced image files.

Making Local Changes

You can set the appearance of indicators and demonstrators for a single
scenario authoring package. Modify the scenariotemplate.txt file (and its
referenced image files) in the \\ScenPack\HTML folder. After the scenario
author links the scenarios to the simulation and Scenario Player applets (see
“Distributing Simulations to Scenario Authors” on p. 69), the applied changes
appear when the scenarios are run from the SitePack folder.

The Scenario Player applet first looks for scenariotemplate.txt in the SitePack
folder. If the file is not found in this local folder, the Scenario Player applet
looks for scenariotemplate.txt in the designated common folder.

Example

A line of cellular telephones uses a common folder for the scenariotemplate.txt
file and referenced images, but a new product in the line is geared toward
younger clients. The scenariotemplate.txt file and image files can be modified to
adapt to this specific product’s style.

Modifying Indicators

Currently, there is one kind of indicator defined in the scenariotemplate.txt file.
Indicators are defined under the Indicators element, using the
ScenarioObject element. The ScenarioObject element defines the fill
and border colors, corner length, and blink timing of the indicators. The
default attributes are as follows:

W O R K I N G W I T H I N D I C A T O R S A N D D E M O N S T R A T O R S

97
<Indicators>
<ScenarioObject type='highlight' className='RectangleIndicator'
MaxFrameLength='18' CornerLength='10' FillColor='#FFFF00'
BorderColor='#000000' Blinking='on' BlinkingInterval='50'
BlinkingTime='9000'/>

</Indicators>

To modify the appearance of indicators:

1 In a text editor, open the appropriate scenariotemplate.txt file (see “Making
Global or Local Changes” on p. 95).

2 Locate the attribute you want to modify and change its value as needed.
The attributes are described in the following table.

❖ NOTE: XML is case-sensitive, so enter and reference values precisely. Also,
make sure that there are no spaces between the attribute value and the
quotation marks around it.

3 Save and close the file.

You can edit most of the default values for the ScenarioObject element, but
you cannot create a new one. The following table describes the attributes.

A T T R I B U T E D E S C R I P T I O N

type Identifies the indicator. Corresponds to the indicator
Type property in the Scenario Authoring Tool.
Do not change.

className The type of indicator. Do not change.

CornerLength The length, in pixels, of each corner.

FillColor The color of the area enclosed by the indicator’s
border. Color values can be defined as follows:

• A six-digit hexadecimal code, prefaced by a
number sign (for example, use #FFFFFF for
white).

• One of the color names defined in Java code:
black, blue, cyan, darkGray, gray, green,
lightGray, magenta, orange, pink, red, white,
yellow.

BorderColor The color of the indicator’s outline. Color values are
defined the same way as for FillColor.

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

98
Modifying Demonstrators

There are nine demonstrators defined in the scenariotemplate.txt file. The
Demonstrator elements have attributes that define the image files, and they
have x,y coordinates on the image for the pointer’s tip—the part of the image
that enters the simulation object’s hotspot or active area. The default
attributes are as follows:

<Demonstrators>
<Demonstrator type='up' image='images/demo_n.gif' tip_x='0'
tip_y='2'/>

<Demonstrator type='down' image='images/demo_s.gif' tip_x='14'
tip_y='15'/>

<Demonstrator type='left' image='images/demo_w.gif' tip_x='0'
tip_y='14'/>

<Demonstrator type='right' image='images/demo_e.gif' tip_x='15'
tip_y='3'/>

<Demonstrator type='upRight' image='images/demo_ne.gif'
tip_x='19' tip_y='0'/>

<Demonstrator type='rightDown' image='images/demo_se.gif'
tip_x='20' tip_y='20'/>

<Demonstrator type='downLeft' image='images/demo_sw.gif'
tip_x='0' tip_y='20'/>

<Demonstrator type='leftUp' image='images/demo_nw.gif' tip_x='0'
tip_y='0'/>

<Demonstrator type='hand' image='images/hand.gif' tip_x='8'
tip_y='1'/>

</Demonstrators>

Blinking Determines whether or not the indicator blinks or
remains in a steady state. Can be set to on or off.

BlinkingInterval Determines the rate at which the indicator blinks or
zooms. The the blink or zoom property must be
selected for the indicator in the Scenario Authoring
Tool.

BlinkingTime The time, in milliseconds, for which an indicator
will blink before changing to steady state.

A T T R I B U T E D E S C R I P T I O N

W O R K I N G W I T H I N D I C A T O R S A N D D E M O N S T R A T O R S

99
Example

In the following demonstrators, the tip coordinates are (8, 0), (0, 0), and
(8, 1), respectively:

To modify the appearance of demonstrators:

1 In a text editor, open the appropriate scenariotemplate.txt file (see “Making
Global or Local Changes” on p. 95).

2 Locate each attribute you want to modify and change its value as needed.
The attributes are described in the following table.

❖ NOTE: XML is case-sensitive, so enter and reference values precisely. Also,
make sure there are no spaces between the attribute value and the quotation
marks around it.

3 Save and close the file.

You can edit an existing Demonstrator element, but you cannot create a new
one. The following table describes the attributes.

A T T R I B U T E D E S C R I P T I O N

type Name used to specify the demonstrator. Corresponds
to the Type property of demonstrators in the Scenario
Authoring Tool. The value reflects the direction in
which the demonstrator is pointing.

Do not change.

image Relative path and file name of the image used for the
demonstrator.

tip_x The x coordinate on the image, in pixels, where the
image enters the object’s hotspot.

tip_y The y coordinate on the image, in pixels, where the
image enters the object’s hotspot.

Tip Tip Tip

type='up' type='leftUp' type='hand'

D E V E L O P I N G T H E S C E N A R I O P L A Y E R A P P L E T

100
Example

You can change the Up arrow to a company logo. First place the file mylogo.gif
in the images folder. Next, find the code for the Up arrow:

Change the value of the image attribute and update the values for tip_x and
tip_y, as shown in bold:

<Demonstrator type='up' image='images/mylogo.gif' tip_x='8'
tip_y='4'/>

Now every time a demonstrator of Type Up is used in the Scenario Authoring
Tool, the new demonstrator image appears in the scenario.

<Demonstrators>
<Demonstrator type='up' image='images/demo_n.gif' tip_x='11'
tip_y='0'/>

</Demonstrators>

Original Demonstrator
element

101
A P P E N D I X A

Code Generation
Output

This appendix presents information about:

• Parameters that are updated automatically during the code generation and
make processes.

• Files in the root folder of the code generation output folder.

• Generated subfolders and their contents.

• Generated .html files and the way they fit together.

C O D E G E N E R A T I O N O U T P U T

102
UPDATED SIMULATION AND SCENARIO
PARAMETERS

During the make process, .html and .js template files from the
\\Rapidx\Java\HTML folder are copied to the SitePack and
\\ScenPack\SitePack output folders and updated.

The following parameters are replaced and/or updated during Java code
generation:

P A R A M E T E R D E S C R I P T I O N

<APP_CLASS_NAME> The simulation class name. This is generally the
same as the application name, but uses the Java
convention of all lowercase letters for package
names.

<APP_HEIGHT> The simulation applet height (same as the
original application height).

<APP_NAME> The application name.

<APP_WIDTH> The simulation applet width (same as the
original application width).

<PACK_NAME> The simulation package name. This is generally
the same as the application name, but uses the
Java convention of all lowercase letters for
package names.

<SCEN_FILEx> The scenario file names exported from the
Scenario Authoring Tool. For example,
MyScen1.txt, MyScen2.txt, MyScen3.txt, etc.

<SCEN_NAMEx> The scenario title, as entered through the
Scenario Authoring Tool (for example, “Setting
the Clock”).

❖ NOTE: If there are fewer scenarios than scenario
parameters, the excess parameters are deleted. If
there are more scenarios than parameters, you
can add parameters to the .html files.

C O D E G E N E R A T I O N O U T P U T F I L E S I N T H E R O O T F O L D E R

103
CODE GENERATION OUTPUT FILES IN THE
ROOT FOLDER

The following files are in the root folder of the code generation output folder:

GENERATED SUBFOLDERS

The code generation output folder contains subfolders and files to run
simulations and build scenarios. The folders that are created depend on your
settings in make.config. Some folders are temporary and are automatically
removed if the cleanUp option in the make.config file was set to yes (default).
(See “Setting Configuration Options” on pp. 44-51 for details.)

The generated subfolders are described in this section.

F I L E D E S C R I P T I O N

<MyApp>.cgr This file is for internal program use.

<MyApp>.ids This file contains the name of each object in the
simulation and an identification number for each
object. These IDs are used by the Scenario Authoring
Tool to indicate objects in the simulation.

<MyApp>.jlp This file contains user-defined simulation parameters
such as application name, height, and width. It is used
by Rapid to pass information to the make process.

<MyApp>_Image-
Packager.txt

This file contains the image download category
information for every image, and the color palette
entries for .gif files. For more information on image
download categories, see “Optimizing Image
Download” on p. 57.

make.bat This file runs the make process as described in “Making
Simulations Without Regenerating Code” on p. 62.

Utility batch files These files are for internal program use.

C O D E G E N E R A T I O N O U T P U T

104
<MyApp> Folder

The <MyApp> folder contains the generated Java files. These files are used for
the make process.

Build Folder

The Build folder contains the configuration file for the code optimization
tool, DashO-Pro, and the report files generated by DashO-Pro. The Out
subfolder contains the optimized classes generated by DashO-Pro.

This folder is removed automatically when cleanUp is set to yes.

CdPack Folder

The CdPack folder contains all the files necessary to install Front End
Processor (FEP) support for Web browsers on the simulation user’s computer:

• The FepInstall.exe file to install FEP support for Web browsers on the
simulation user’s computer. If the make.config file contains the command
installFep=yes, the FepInstall.exe file runs automatically on the Rapid
application designer’s computer immediately after code generation.

• The FepUninstall.exe file to uninstall FEP support for Web browsers.

• Other files and subfolders required by the simulation applet.

After FEP installation, users can run Java simulations that use FEP from the
SitePack folder (p. 105). Java simulations that use FEP can only run from a
CD-ROM or a local hard disk.

Classes Folder

The Classes folder contains the compiled generated code in subfolders that
correspond to package names.

This folder is removed automatically when cleanUp is set to yes.

Localres Folder

The Localres folder contains generated application resources to be included in
the .jar or .cab files.

This folder is removed automatically when cleanUp is set to yes.

G E N E R A T E D S U B F O L D E R S

105
ScenPack Folder

The ScenPack folder contains the entire work environment for use with the
Scenario Authoring Tool, including utility files to run the link process and
copies of the \\Rapidx\Java\HTML folder, the simulation folder, and the
SitePack folder (see below).

SitePack Folder

The SitePack folder contains only the files needed to run simulations and
scenarios from a Web server.

❖ CAUTION: Do not modify the contents of SitePack. The contents are
overwritten every time the make process is run. To make changes, modify source
files and then run the make process again.

The SitePack folder includes the following subfolders and files:

Subfolders

The subfolders in the SitePack folder include:

• The <myapp> folder, containing the necessary files to run the simulation
applet.

• The control_icons folder, containing the images for the Scenario Player
applet’s JavaScript interface (see Appendix C: “JavaScript User Interface for
Scenarios”). This folder can be deleted if the JavaScript interface is not
used.

• The images folder, containing the image files for the Scenario Player
applet.

• The resources folder, containing the .wav files and .txt files that are called
by the simulation applet.

Files

The files in the SitePack folder include:

• The .html files to view the simulation applet (and Scenario Player applet)
in a Web browser.

The applets are run from one of three files: demo_player.html,
demo_playerviewnew.html, and demo_playerviewold.html. You can also
run the simulation applet (without the scenarios) from demo_sim.html.

C O D E G E N E R A T I O N O U T P U T

106
The other .html files are used with the HTML FRAMESET elements for
demo_playerviewnew.html and demo_playerviewold.html, as illustrated
on p. 106.

These files are examples. The Web designer should modify them as
necessary for the Web site.

• The .js files, which hold functions and parameters to display and run the
simulation applet and the Scenario Player applet, and hold the version
number for the Scenario Player applet and its user interface.

• The scenariotemplate.txt file to modify the appearance of the Scenario
Player applet (see Chapter 5: “Developing the Scenario Player Applet”).

• Image files, grad.gif and wait.gif, used for displaying the .html pages.

• Scenario .txt, .zip, and .wav files with references (links to start them) in the
relevant .html files.

• Simulation .jar and .cab archive files.

StandAlone Folder

The StandAlone folder contains the files necessary to run a stand-alone
simulation for the stand-alone Prototyper. This type of simulation is for
testing during application development and can only be viewed on a
computer with the full RapidPLUS Web Studio installation.

HTML FILES

The automatically generated .html files are examples—the Web designer
should modify them as necessary for the Web site. The main files used to run
the simulation with scenarios are demo_player.html, demo_playerviewnew.html,
and demo_playerviewold.html. The diagrams in this section illustrate how these
files arrange applets and .html files in Web browsers.

H T M L F I L E S

107
The demo_player.html File

In the demo_player.html file, the Scenario Player applet and simulation applet
are arranged in an HTML TABLE element:

A graphic appears above and below the Scenario Player applet. The Web
designer can edit the graphics as necessary in the .html file, and can adjust the
scenariotemplate.txt file (see Chapter 5: “Developing the Scenario Player
Applet”).

The demo_playerviewnew.html File

The demo_playerviewnew.html file is intended for scenarios that run with the
JavaScript user interface (see Appendix C: “JavaScript User Interface for
Scenarios”), therefore, the Scenario Player applet is launched, but hidden.

Simulation
applet

demo_player.html

Scenario
Player
applet

C O D E G E N E R A T I O N O U T P U T

108
The file calls other .html files through HTML FRAMESET elements, and
arranges them as follows:

❖ NOTE: This file is for demonstration purposes;
it is not a supported Scenario Player applet interface.

The demo_playerviewold.html File

The demo_playerviewold.html file is intended for scenarios that run with the
JavaScript user interface and only use simulation prompts (see Appendix C:
“JavaScript User Interface for Scenarios”). The Scenario Player applet is
launched, but hidden. The file calls other .html files through HTML FRAMESET
elements, and arranges them as follows:

demo_control.htmldemo_headnew.html

demo_playerviewnew.html

demo_viewnew.html

demo_tail.html

Simulation
applet

demo_sim.htmldemo_player_head.html

demo_playerviewold.html

demo_scenarios.html

demo_tail.html

Simulation
applet

109
A P P E N D I X B

Errors, Warnings
and Messages

As code is generated, a running log of the code generation process is displayed
in the Code Generation Status window. The log includes notification
regarding code generation problems (or potential problems) encountered.
These notices are classified as follows:

• Errors (E): If the code generation encounters one of these conditions, the
generated code might not compile.

• Warnings (W): These conditions may or may not result in improper
application performance and they should be investigated before compiling
the code and linking scenarios.

• Informational messages (I): These notices are primarily informational,
although some of them may indicate application bugs that should be
corrected.

This appendix presents errors, warnings, and informational messages that
may appear when generating code.

E R R O R S , W A R N I N G S A N D M E S S A G E S

110
ERRORS (E)

E R R O R M E S S A G E R E M A R K S

You may not pass a property
by reference in Java

The Rapid application contains a call to a user-
defined function, whose parameter(s) must be
an assignable data object.

Change the Rapid application to make it
suitable for Java code generation.

Corrupted application The Rapid application is corrupted.

Re-verify the logic before code generation.

Error recognizing the line:
<Rapid source code>

The Rapid application contains an invalid
logic line.

Re-verify the logic before code generation.

Problem generating object:
<object name>

Implementation error.

Report the error to the Rapid technical
support.

Object Array: <array name>
has a non-generated object

The Rapid application contains an object array
with an initial object, that is not supported in
the Java simulation.

Change the initial object in the array before
code generation.

User Object name: <user
object name> is the main
application name. This will
cause conflicts while trying to
compile this file.

The application source code files have
overwritten the user object’s source code files.
The application will not compile.

Save the user object under a different name,
then use it to replace the original user object.

File: <file name> is Read
Only

A previously generated file has been re-defined
as read-only, so the Code Generator cannot
overwrite it.

Change the file attribute before code
generation.

E R R O R S (E)

111
Font is not
available

The Rapid application contains a font that is
not available in the current Windows font set.

Change the font in the Rapid application, or
install the missing font.

Linked file <file name> is not
found.

Bitmap or image object cannot be generated
because its linked file is not found.

Verify the location of the linked file.

<Application name> is the
name of a Java reserved
word. This will cause
conflicts while trying to
compile this file.

Save the application under another name
before code generation.

There must be at least one
local compound mode

The UDC_<MyApp>.pkgr file should contain at
least one index number LOAD_LOCAL mode
between “BEGIN COMPOUND” and “END
COMPOUND” statements, and at least one
mode belonging to this loading category
between “BEGIN MODES” and “END MODES.”

Fix the .pkgr file, or delete it to use the default
settings before code generation.

A transition without
destination mode has been
found

This condition is usually the result of pasting
modes between applications.

Re-verify logic before code generation.

E R R O R M E S S A G E R E M A R K S

E R R O R S , W A R N I N G S A N D M E S S A G E S

112
WARNINGS (W)

W A R N I N G M E S S A G E R E M A R K S

Else without If statement The Rapid application contains an Else
without an If statement.

Fix the Rapid application logic before code
generation.

For statement is empty The Rapid application contains an empty For
statement.

Fix the Rapid application logic before
regenerating code.

Application contains blank
lines of logic

The Rapid application contains a blank line of
logic.

Delete the line from the Rapid application
before code generation.

Subroutine: <function name>
contains an invalid
parameter

The Rapid application contains a user-defined
function with a parameter type that is not
supported by the Java Code Generator. As a
result, the generated application behaves
differently from the Rapid application.

Fix the user-defined function in the Rapid
application before code generation.

Function:<function name> is
not supported

or

Object: <object name> is not
supported

or

Property: <property name> is
not supported

The Rapid application contains an object,
object property, or object function that is not
supported by the Java Code Generator. As a
result, the generated application behaves
differently from the Rapid application.

Remove the unsupported item from the Rapid
application before code generation.

W A R N I N G S (W)

113
Mode <transition source
mode name> contains a
mouse-based transition.

The Rapid application contains a transition
that is based on a mouse object event or
property. Since the mouse object is
implemented differently in Java code, the
generated application may behave differently
from the Rapid application.

Change the Rapid application so as not to use
a mouse-based transition.

Removing unnecessary user
function <function name>

A function is not generated if:

• It is both unexported and unreferenced by
the application or user object.

• It contains a parameter that cannot be
generated (such as an unsupported object).

Mouse cursor: <mouse cursor
shape name> is generated
with default shape.

The Rapid application contains cursor shapes
that are not supported by the Java Code
Generator. These shapes are replaced with the
default arrow shape in the generated
application.

To avoid arbitrary replacement, use cursor
shapes that are compatible with Java
technology in the Rapid application.

Function: <function name>
is not necessary and
therefore, is not generated

Rapid application functions that are not
required in Java code (for example, “Mouse
activate”) are omitted from the generated code
without affecting the behavior of the Java
application.

W A R N I N G M E S S A G E R E M A R K S

E R R O R S , W A R N I N G S A N D M E S S A G E S

114
INFORMATIONAL MESSAGES (I)

M E S S A G E R E M A R K S

Removing the unnecessary
<entry/exit/mode/transition>
activity from mode <mode
name>

A logic line which was commented out in the
Logic Editor is not being generated.

Issued the command:
<command>

The command specified in the Code
Generation Preferences dialog box has been
executed.

<fileName.java> will be
backed up as
<fileName.java$$>

When generating code in a folder that already
contains output files of the same name, the
existing output files are backed up by adding
two dollar signs to the file extension.

115
A P P E N D I X C

JavaScript User
Interface for
Scenarios

The Scenario Player applet controls the scenario timing, displays indicators
and demonstrators, and provides a user interface for displaying scenario links
and list prompts. This is the default method for running scenarios. However,
in some circumstances you may prefer to hide the Scenario Player applet and
use a JavaScript user interface instead.

The JavaScript user interface enables control over the appearance of scenarios
in the Web browser—more control than the scenariotemplate.txt file provides
(see Chapter 5: “Developing the Scenario Player Applet”). The hidden
Scenario Player applet still manages the synchronization of the scenario, and
it still uses the scenariotemplate.txt file to display indicators and demonstrators.
However, control of the scenario playback (e.g., playing and stopping
scenarios), the appearance of the list of scenario links, and the appearance of
list prompts are now governed by JavaScript.

It is important to note that there is not universal support for JavaScript-
Java communication. The following limitations are:

• Netscape 4.6: Java-to-JavaScript communication is not supported, but
JavaScript-to-Java communication is supported.

• Netscape 6: Java-to-JavaScript communication is not supported, but
JavaScript-to-Java communication is supported.

• Internet Explorer for Macintosh with Apple Java: Neither Java-to-
JavaScript communication, nor JavaScript-to-Java communication are
supported.

J A V A S C R I P T U S E R I N T E R F A C E F O R S C E N A R I O S

116
The following illustration shows the flow of information:

All the files necessary for the JavaScript user interface are generated
automatically with the Scenario Player applet to the SitePack subfolder (and
\\ScenPack\SitePack folder) of the code generation output folder.

The demo_playerviewnew.html file and the demo_playerviewold.html file are
automatically generated with the Scenario Player applet. In these files, the
Scenario Player applet is hidden and the JavaScript user interface is used
instead.

Before making changes to the JavaScript user interface, review the following
sections. They provide an explanation of the available functions of the
Scenario Player applet and the simulation applet, as well as a description of
the basic functions in the JavaScript utilities library, appletutilslf2.js.

WEB BROWSER

Scenario
Player
applet

Simulation
applet

Scenario
Template

JavaScript interface
(optional)

S C E N A R I O P L A Y E R A P P L E T F U N C T I O N S

117
SCENARIO PLAYER APPLET FUNCTIONS

The following Scenario Player applet functions are accessible to JavaScript.
Although you can call the functions directly, we recommend that you call
them through the functions provided in the JavaScript utilities library (see
“The JavaScript Utilities Library” on p. 119).

playScript

Loads a scenario script and starts playing it (same as calling the
loadScenario and playClicked functions). Used when the scenario only
has simulation prompts.

Parameter

A string containing the scenario file name.

Syntax
player_applet.playScript("myscenario1.txt");

Called From

Called from PlayScenario(appName, caseName) in appletutilslf2.js.

loadScenario

Loads a scenario script without playing it.

Parameter

String containing the scenario file name.

Syntax
player_appletp.loadScenario("myscenario1.txt");

Called From

Called from LoadScenario(appName,caseName) in demo_control.html.

J A V A S C R I P T U S E R I N T E R F A C E F O R S C E N A R I O S

118
playClicked

Starts or resumes playback of a scenario which has already been loaded.

Parameter

None.

Syntax
player_applet.playClicked();

Called From

Called from PlayClicked(appName) in appletutilslf2.js.

stopClicked

Stops a playing scenario and resets the simulation to its initial state.

Parameter

None.

Syntax
player_applet.stopClicked();

Called From

Called from StopClicked(appName) in appletutilslf2.js.

pauseClicked

Pauses the scenario.

Parameter

None.

Syntax

player_applet.pauseClicked();

Called From

Called from PauseClicked(appname) in appletutilslf2.js.

T H E J A V A S C R I P T U T I L I T I E S L I B R A R Y

119
THE JAVASCRIPT UTILITIES LIBRARY

A JavaScript utilities library, appletutilslf2.js, is copied to the
\\ScenPack\HTML folder during code generation. Some of the functions
defined in this file, such as rapid_applet(), are called from the .html pages.
The remaining functions are used by the JavaScript files.

The functions described in this section provide a high-level interface between
the simulation and the Scenario Player applet.

❖ NOTE: Some of these functions have the same basic functionality (and even
names) as the functions in the Scenario Player and simulation applets. We
recommend that you call these functions through the JavaScript library, since the
JavaScript functions perform additional checks to prevent timing problems.

rapid_applet

Dynamically inserts the APPLET tags for the simulation applet into the
referring .html file. The values for the parameters are supplied by rapidapp.js.

Syntax
rapid_applet(appName, codebase, width, height, backcolor);

Parameters

Called From

Called from demo_player.html, demo_control.html, and demo_sim.html.

appName Name of your simulation applet.

codebase Search path for Java classes.

width Width of the applet.

height Height of the applet.

backcolor Background color of the simulation applet. The
value must be a hexadecimal number in RRGGBB
format. For example, white is FFFFFF, black is
000000, and red is FF0000.

J A V A S C R I P T U S E R I N T E R F A C E F O R S C E N A R I O S

120
Example

To display a simulation applet, the following script is added to the .html files:

rapid_applet(rapid_AppName, ".", rapid_Width, rapid_Height,
rapid_Background
);

player_applet

Dynamically inserts the APPLET tags for the Scenario Player applet into the
referring .html file. The value for the parameters is supplied by rapidapp.js.

Syntax
player_applet(appName, codebase, width, height, backcolor, visible,
commonFiles)

Parameters

Called From

Called from demo_player.html, demo_control.html, and demo_sim.html.

appName Name of your simulation applet.

codebase Search path for Java classes.

width Width of the applet.

height Height of the applet.

backcolor Background color of the applet. The value must be a
hexadecimal number in RRGGBB format. For
example, white is FFFFFF, black is 000000, and red is
FF0000.

visible True if Scenario Player applet is visible.

commonFiles Relative or absolute path to the common files
directory, which contains the scenariotemplate.txt file
and related image files.

T H E J A V A S C R I P T U T I L I T I E S L I B R A R Y

121
Example

To display a Scenario Player applet, with the scenariotemplate.txt file stored in
the images folder, the following script is added to the .html files:

player_applet(rapid_AppName, ".", rapid_PlayerWidth,
rapid_PlayerHeight, rapid_PlayerBackground,

true, // Visible
"images" // Common files
);

PlayScenario

Verifies that the simulation has loaded, then loads the scenario and starts
playback. Calls the Scenario Player applet function playScript.

Syntax
PlayScenario(<appName>, <caseName>)

Parameters

Called From

Called from demo_scenarios.html.

Example

Click
here to view the first scenario.

appName The name of your simulation applet. This must be
the same as the <appName> parameter in the
rapid_applet function.

caseName The name of the scenario .txt file, such as
“scenario1.txt”.

J A V A S C R I P T U S E R I N T E R F A C E F O R S C E N A R I O S

122
StopClicked

Stops playing a scenario. Calls the Scenario Player applet function
stopClicked.

Syntax
StopClicked(<appName>);

Parameters

Called From

Called from demo_scenarios.html and demo_control.html.

Example

Stop

PlayClicked

Starts or resumes scenario playback. Calls the Scenario Player applet function
playClicked.

Syntax
PlayClicked(<appName>);

Parameters

Called From

Called from demo_scenarios.html and demo_control.html.

Example

Play

appName The name of your simulation applet. This must be
the same as the <appName> parameter in the
rapid_applet function.

appName The name of your simulation applet. This must be
the same as the <appName> parameter in the
rapid_applet function.

T H E R A P I D A P P L I C A T I O N L I B R A R Y

123
PauseClicked

Pauses a scenario. Calls the Scenario Player applet function stopScript.

Syntax
PauseScenario(<appName>);

Parameters

Called From

Called from the demo_scenarios.html.

Example

Pause

THE RAPID APPLICATION LIBRARY

The file rapidapp.js stores information about the simulation and player applets
such as name and size. These data are referenced by JavaScript functions in
other libraries. Their definitions are supplied during code generation.

appName The name of your simulation applet. This must be
the same as the <appName> parameter in the
rapid_applet function.

P A R A M E T E R (W I T H E X A M P L E) D E S C R I P T I O N

rapid_AppName = "myapp"; Name of the simulation applet.

rapid_Width = "200"; Width of the simulation.

rapid_Height = "300"; Height of the simulation.

rapid_Background = "FFFFFF"; Background color of the
simulation applet.

rapid_PlayerWidth = "340"; Width of the Scenario Player
applet.

rapid_PlayerHeight = "365"; Height of the Scenario Player
applet.

J A V A S C R I P T U S E R I N T E R F A C E F O R S C E N A R I O S

124
rapid_PlayerBackground = "FFFFFF"; Background color of the
Scenario Player applet.

rapid_PlayerCommonFiles = "http://
www.example.com/common_files";

Common URL for the
scenariotemplate.txt file and
Scenario Applet images.

rapid_minFlashRate = 10000 Minimum acceptable download
rate (in bytes/second) for Flash
audio. If the download rate is
less than this value, .wav files
will be used, even if Flash audio
files are available.

P A R A M E T E R (W I T H E X A M P L E) D E S C R I P T I O N

125
Index

256 colors
.gif files 19
ImagePackager.txt 58
monitor display settings 20
palettes 20

A

actionOutEvent event 94
activate function, mouse object 31
allowFreePlayWhilePaused: function 80
animated objects 14
APPLET element 67, 119–120
AppletContext_Manager.udo 74, 90–92
applets

defined 2
Rapid generated 2
See also Scenario Player applet, simulation

applets, simulations
appletutilslf2.js file

applet functions 67, 90, 119–121
PauseClicked, Java function 123
pauseClicked, JavaScript function 118
PlayClicked, Java function 122
playClicked, JavaScript function 118
PlayScenario, Java function 121
playScript, JavaScript function 117
StopClicked, Java function 122
stopClicked, JavaScript function 118

applications
See Rapid applications

array objects
files (.rar) 18
instead of data store objects 17
nongenerated functions 15
nongenerated functions of 15
sorting strings 39

ASCII objects 14
audio files

formats 22
optimizing download 23
See also .wav files, Flash audio files

B

bitmap objects 14, 21
See also image objects

browsers
See Internet Explorer, Netscape

bufferingEndEvent event 85
bufferingProgressUpdateEvent event 85
bufferingStartEvent event 85
build folder 104

C

callJavaScriptFunction: with: function 91
CdPack folder 66, 104
CD-ROM, Macintosh 70
.cgr file 103
changeBy: function, as mode activity 39
circle objects 14
classes folder 104
code generation

output folder 52, 78, 103–106
process 55–56

I N D E X

126
code generation (cont.)
for Scenario Player applet 78–79
setting preferences 52–53
for simulation applets 53
See also make configuration, make process

Code Generation Preferences dialog box 52–53,
78

Code Generation Status dialog box 53–54, 78
color mapping

graphic display objects 36
color palettes

256 colors (.gif) 19–22
graphic display objects 36
ImagePackager.txt 58
true color (.jpg) 19–22
using the same 20

command to run 52, 78
command window 47, 54
compression, simulation applets 7
configuration options

See also make configuration
configuration options, setting 44
constant objects 14
cursorEntered event 38
cursorExited event 38
cursors 14, 16–17

D

dashogui.bat, updating JDK path 51
DashO-Pro

build folder 104
bypassing JavaBean objects 50
compiling simulations 7
dashogui.bat 51
in make process 56
path in make.config 49
and write permission 53

data objects 14, 17
data store objects

files (.rds) 18
nongenerated functions 15
or array objects 17
in Scenario Player application 81
sorting strings 39

date objects, year property 34

debugging options 47
demo_control.html 107
demo_headnew.html 107
demo_player.html 66, 68, 107
demo_player_head.html 108
demo_playerviewnew.html 67, 107
demo_playerviewold.html 67, 108
demo_scenarios.html 108
demo_sim.html 66, 108
demo_tail.html 107–108
demo_viewnew.html 107
Demonstrator element 98–100
demonstrators

images 99
modifying in scenariotemplate.txt 99

disableSimulation function 80
display objects 14
distribution

See packages
download time

changing 68
considerations 29
Internet Explorer 7
Netscape 7
simulation applets 7
what user sees 7, 57–58, 68

dynamically created objects 30

E

enableSimulation function 80
environment, Java 2
errorPromptEvent event 89
errors 110–111
event objects 14
exported events 34
externalCall event 90
externalCallFunction property 90
externalCallParams property 90

F

feedback 7, 57–58, 68
FEP 8, 45, 66, 104
FepInstall.exe 66, 104
FepUninstall.exe 104
file compression, simulation applets 7

I N D E X

127
file names
Macintosh 70
of Rapid applications and objects 12

file size
download time 9
.jpg files 21
scenarios 29–31
simulation functionality 3
splitting large files 59–61

firstPromptEvent event 77, 89
Flash audio files 24–25
flastPromptEvent event 89
folders

code generation output folder 52, 78, 103–106
generated folders 103–106
<MyApp> 104
naming 12
\\Rapidx\Java

See \\Rapidx\Java
resources 18, 23, 25, 48
See also under specific folder names

font objects 14
fonts

creating .gif files 27–28
Japanese 26
logical, defined 26
mapping 26
native (system) 26–28
nonnative 28
optimizing 28
specify physical fonts 27

frame objects 14
FRAMESET element 67
function arguments 40

G

generated objects 13–14
generating code 53, 78–79

See also code generation
getBufferingProgress function 80
getParameter: function 91
getScenarioProgress function 78, 80
getScenarioSteps: function 76, 80
getVolume function 80

.gif files
color palettes 19
setting transparency 20
for Rapid objects 22

graphic display objects 14
color manipulation functions 36
nongenerated functions 15

graphic display objects, color mapping 36
graphic objects, name function 15
graphics

demonstrators 98–99
formats 19
for Rapid objects 21–22
recommendations 20–22
See also .gif files, .jpg files, images

group headings 74–75

H

hand cursor 17
holdCopyOf: function 15, 36
holder objects 15, 34, 36
holdNew function 15
horizontal linear indicator objects 15
.html files

See under specific file name
HTML folder 90, 96, 105

I

icon cursor 17
.ids file 103
image objects 14

cumulative changes 37
with Rapid objects 21
See also graphics, images

ImagePackager.txt file 58, 103
images

changing download category 58–59
download categories 57–58

indicator objects 14–15
indicators

modifying in scenariotemplate.txt 97
target objects 30

informational messages 114
integer array objects, nongenerated functions 15

I N D E X

128
Internet Explorer
download time 7
Flash plug-in 25
Macintosh 115

J

Japanese fonts 26
Java

applet 2
differences from Rapid 32–41
environment 2
fonts 26
generating code 53–79

See also code generation
planning for 9

Java folder
See \\Rapidx\Java folder

JavaBean objects 16, 50, 75–76
JavaScript

limitations 115
Rapid application library (rapidapp.js) 123–124
Scenario Player applet functions 117–118
utilities library (appletutilslf2.js) 119–123

JDK 1.1 16
JDK 1.3

compiling simulations 6
path in make.config 49

.jlp file 103
jog dial objects, behavior in Java 37
.jpg files

color palettes 19
for Rapid objects 21–22

L

label objects 14
lamp objects 14
large files, splitting 59–61
lastPromptEvent event 77
line objects 14
linking scenarios, through make.bat 62
list prompts 77
loadScenario function 117
loadScenario: function 81

loadScenariosStructure: function 75, 81
local variables, instead of data objects 17
localres folder 104

M

Macintosh
CD-ROM 70
Internet Explorer 115

make configuration
debugging options 47
Scenario Player applet 47, 79
setting options 44
simulation package options 45
system options (DashO-Pro and JDK) 49
version information 49
viewer options 46

make process
configuration options 44
described 56
JDK path 49
without regenerating code 62

make.bat
code generation preferences 52, 78
link process 62
updating JDK path 51
See also make process

make.config
blank lines 44
and make process 56
modifying 44
override for one simulation 44
See also make configuration

makePlayer.bat file 78
Microsoft Windows 95 19
Microsoft Windows 98 19, 54
mode activities, self-changing 39
modes as objects (triggers) 14
modifying

demonstrators 99
indicators 97
make configuration options 44

modulo: function 37
monitor display settings

256 colors 20
true color 20

I N D E X

129
mouse objects 14
activate function 31
nongenerated functions 15

muteSimulationSound: function 82
<MyApp>_ImagePackager.txt file 58, 103
<MyScenario>_ prompt.txt file 76–77

N

name function 15
naming, Rapid applications, objects, and

folders 12
native fonts 26–28
Netscape

download time 7
Flash plug-in 25
and JavaScript 115
large files 59

network drive, compilation error 53
nongenerated functions and options 15–16
nonnative fonts 28
normalPromptEvent event 77, 89
number array objects, nongenerated functions 15

O

objects
See Rapid objects

optimizing
fonts 28
image download 20–22, 57–59
Java code 36, 39, 56
large file download 59–61
Rapid logic 29
.wav download 23

output folder, code generation 52, 78, 103–106

P

packages
choosing 7–8
defined 6
distributing 69–70
scenario author 7, 69
setting options (Make Targets) 45
simulation-only 8, 69
Web designer 69

palettes
See color palettes

pause function 82
pauseAfterEachStep: function 82
PauseClicked, Java function 123
pauseClicked, JavaScript function 118
pausedEvent event 85
perform: function 94
.pkgr file 60, 111
play: function 82
PlayClicked, Java function 122
playClicked, JavaScript function 118
player_applet function 120
PlayScenario, Java function 121
playScript, JavaScript function 117
playStep: function 76, 83–84
playWithoutRestart: function 83
pointer objects 14–15
portability

simulation applets 7
stand-alone simulations 6

potentiometer objects 14
primitive objects 14–15
prompts

See list prompts, simulation prompts
promptStep property 86
promptStyle property 86
promptSubStep property 87
promptText property 77, 87
Prototyper window 6, 54
publishing

See packages
pushbutton objects 14
pushbuttons

hidden transparent 30
selecting multiple 38
transparent 17, 21

R

Rapid applications
code generation preferences 52–53
generating code 53–79
inputs and outputs 12
Java considerations for 9

I N D E X

130
Rapid applications (cont.)
naming 12
resources folder 18
scenario considerations for 29–32
See also simulations

Rapid functions, nongenerated 15–16
Rapid objects

creating during scenario runtime 30
generated objects 13–14
naming 13
with true color 21

rapid_applet function 119
rapidapp.js file 119–120, 123
\\Rapidx\Java folder

HTML folder 105
make.bat 52, 78
make.config 44, 51
scenariotemplate.txt 95
template files (.html and .js) 102
for viewing stand-alone simulations 6, 65

\\Rapidx\Java\HTML folder 90
.rar files 18
.rds files 18
requirements

DashO-Pro 7
JDK 1.3 6
See also updates in the Readme file

resource folders 18, 23, 25, 48
restartSimulation function 83
resume function 83
resumedEvent event 85
round dial indicator objects 15
runApplet.bat 65
running simulations 64–67
runStandAlone.bat 64–65
runtime, adding objects in scenarios 30

S

saving
during runtime 38
informational messages 54, 79

scenario author
package 7, 69
and Scenario Authoring Tool directory 49

and simulation consideration 29–32
updating simulation applets 70
workflow 4–5, 29

Scenario Authoring Tool (SAT) 3, 49, 69, 72
scenario indicators, target objects 30
Scenario Player applet

examples 74–78
generating 78
make configuration 47
modifying demonstrators 98
modifying indicators 96
overview 71
scenario authoring package 7
See also under specific .udo and function name

Scenario Template
See scenariotemplate.txt

scenarioEndEvent event 85
ScenarioObject element 97
ScenarioPlayer_Manager.udo 73, 79–85
ScenarioPlayerUI_Agent.udo 73, 86–89
scenarioProgressUpdateEvent event 85
scenarios

activating mouse object for 31
creating links to 62
creating objects during runtime 30
defined 3
download time for 29–31
fast forward 84
images and audio files 31
prompts

See list prompts, simulation prompts
scenario authoring package 7, 69
See also Scenario Player applet
simulation design considerations 30
supplementary devices 31
target objects 30
updating simulation 32

scenarios.txt file 75
scenarioStartEvent event 84–85
scenariotemplate.txt

defined 95
modifying 95–100
\\Rapidx\Java folder 95
\\ScenPack\HTML folder 96

I N D E X

131
ScenPack folder
contents 105
scenario authoring package 7
scenariotemplate.txt 96
and SitePack folder 70

selecting multiple pushbuttons 38
servers, UNIX 13
setCursor:overObject: function 15
setMonitorMode function 94
setRerouteMode function 94
setSimulationVolume: function 83
setVolume: function 75, 83
setWaitCursor: function 83
showDocument: in: function 92
showPromptsWhileSkipping: function 83
signal objects 14
simulation applets 7

defined 2
portability 7
updating 32, 70
viewers 7

simulation prompts
demo_playerviewold.html 67, 108
JavaScript functions 117
target objects 30

Simulation_Agent.udo 74, 93–94
simulations

choosing a type 6
download time for 29, 68
free-play 2
packages 69–70
running 64–67
and scenarios 29–32

See also scenarios
simulation applets 7
stand-alone 6, 8
updating 32, 70
users 7, 57–58, 68
See also Rapid applications

SitePack folder
contents 105–106
linking scenarios 62
make process 56, 102
and ScenPack folder 70

selecting .html file to run 66
simulation distribution 69–70
simulation-only package 8

sorting strings 39
sound objects 14
source output directory 52, 78
square dial indicator objects 15
StandAlone folder 8, 65, 106
stand-alone simulations 6
startedEvent event 85
status line messages 54–55
steps, scenario 74, 76, 84
stop function 83
stopClicked, JavaScript function 118
stoppedEvent event 85
StopScenario, Java function 122
string array objects

nongenerated functions 15
sorting 39

string objects, nongenerated functions 16
Supplemental Content 74
supplementalContentEnd property 87
supplementalContentEndEvent event 89
supplementalContentFile property 87
supplementalContentLoadEvent event 89
supplementalContentStart property 87
supplementalContentStartEvent event 89
supplementalContentType property 88
.swf files, format 24–25
switch objects 14
system fonts 26–28
system objects 14
SystemCursor objects 16–17
SystemCursor objects, SystemDate objects 14
SystemTime objects 14

T

target objects (for scenarios) 30
testing simulations 68
text display objects 14
text widgets 75–76
time objects 14
timing,scenarios 84
touch screen objects 14, 17

I N D E X

132
transparency
.gif files 19
hidden pushbuttons 30
pushbuttons 21
setting the color 20

true color
.jpg files 19
monitor display settings 20
with Rapid objects 21

U

UDC_<MyApp>.pkgr file 60, 111
UNIX, Web servers 13
updating

JDK file path 51–52
parameters 102
simulation applets 32, 70

user objects
interface messages 16
naming 12
position 41
size 41
with holder objects 15, 34

util.js 106

V

versions.js 106
vertical linear indicator objects 15
viewers

setting options 46
simulation applets 7
stand-alone prototyper 6

W

wait.gif 68
warnings 112–113
.wav files

download 23
format 23
optimizing download 23
resources folder 18

wave audio objects
volume function 16
.wav files 18

Web browsers
See also Netscape, Internet Explorer

Web browsers, limitations 115
Web designer 69
Web servers, UNIX 13
Windows 95 19
Windows 98 19, 54
World Wide Web

See packages, Web servers
write permission 53
writeInStatusBar: function 92

	About the Generating Web Simulations Manual
	Document Conventions

	Introducing RapidPLUS Web�Studio
	The Java Environment
	Rapid–Generated Applets
	Applets for Product Simulations
	Applets for Multimedia Presentations
	Workflow for Developing Multimedia Presentations

	Simulations and Simulation Packages
	Choosing a Simulation Type
	Stand-Alone Simulation
	Simulation Applet

	Choosing a Simulation Package
	Scenario Authoring Package
	Simulation-Only Packages
	Front End Processor CD Package

	Planning for the Java Runtime Environment
	Controlling Download Time
	Planning for Behavioral Differences

	Application Design Guidelines
	Code Generation Inputs and Outputs
	Naming Applications and Resources
	Choosing Rapid Objects
	Generated and Nongenerated Elements
	List of Generated Objects
	Nongenerated Functions or Options
	JavaBean Object Considerations

	Choosing from Similar Objects

	Referencing Files
	Data Store Files (.rds) and Array Files (.rar)
	Audio Files (.wav)
	Image Files
	JavaBean Resources

	Working with Graphic Files
	Choosing Formats for Application Graphics
	Recommendations
	Use True-Color Display Settings
	Use the Same 256-Color Palettes for Bitmap/Image Objects
	Use the Same Transparent Color
	Use Linked .jpg files for Complex Color

	Working with Audio Files
	Using .wav Audio Files
	Adding Wave Audio Objects
	Adding Logic for Wave Audio Objects
	Substituting Flash Audio Files

	Using Native and Nonnative Fonts
	Native Fonts
	Specifying Fonts Used by Java Code
	Changing Native Fonts to .gif files

	Nonnative Fonts
	Font Recommendations

	Optimizing Rapid Logic
	Planning for Scenarios
	Download Time
	Determining the Scope of Simulation Functionality
	Determining Default Settings
	Referencing Objects During Runtime
	Adding Supplementary Devices
	Including Special Images or Audio Files
	Activating the Mouse Object
	Updating the Simulation

	Anticipating Differences in Environments
	Condition-Only Transition Recommendations
	Graphic Display Object Recommendation
	Image Object Recommendations
	User Object Size and Position Recommendation

	Generating Code and the Simulation
	Setting Configuration Options
	Specifying a JavaBean Resource Folder
	Bypassing JavaBean Objects in DashO-Pro

	Updating the JDK File Path
	Generating Java Code from Rapid Code
	Setting Code Generation Preferences
	Running the Code Generator
	Status Line Messages
	The Code Generation Process

	Optimizing Image Download
	Image Download Categories
	LOCAL Download Category
	REMOTE Download Category
	BACKGROUND Download Category

	Changing the Download Category

	Splitting Large Files
	Making Simulations Without Regenerating Code
	Running the Make Process
	Running the Link Process

	Finalizing Simulations for�Distribution
	Running Generated Simulations
	Testing Functionality of Stand-Alone Simulations
	Selecting the File to Run
	Running the Simulation

	Viewing Simulation Applets in a Web Browser
	Installing FEP Browser Support
	Selecting an .html File to Run

	Adjusting Simulation Download
	Changing the Download Rate
	Customizing What the User Sees During Download

	Distributing Simulations (Publishing)
	Distributing Simulations to Web Designers
	Distributing Simulations to Scenario Authors
	Updating the Simulation While Scenarios are Being Developed

	Creating CD-ROMs for Macintosh Computers

	Developing the Scenario�Player Applet
	Building the Scenario Player Application
	Scenario Player Building Blocks
	Scenario Player Usage Examples
	Example 1: Scenarios running in the navigation area
	Example 2: A scenario’s steps displayed in the navigation area
	Example 3: Scenario playback in the navigation area

	Generating Code to Create the Scenario Player Applet
	The User Objects’ API
	ScenarioPlayer_Manager.udo Reference
	Functions of ScenarioPlayer_Manager.udo
	Playing a Scenario from a Specific Step
	Events of ScenarioPlayer_Manager.udo

	ScenarioPlayerUI_Agent.udo Reference
	Properties of ScenarioPlayerUI_Agent.udo
	Events of ScenarioPlayerUI_Agent.udo

	AppletContext_Manager.udo Reference
	Events of AppletContext_Manager.udo
	Properties of AppletContext_Manager.udo

	Simulation_Agent.udo Reference
	Properties of Simulation_Agent.udo
	Events of Simulation_Agent.udo

	Working with Indicators and Demonstrators
	Making Global or Local Changes
	Making Global Changes Before Code Generation
	Making Global Changes for a Web Site
	Making Local Changes

	Modifying Indicators
	Modifying Demonstrators

	Updated Simulation and Scenario Parameters
	Code Generation Output Files in the Root Folder
	Generated Subfolders
	<MyApp> Folder
	Build Folder
	CdPack Folder
	Classes Folder
	Localres Folder
	ScenPack Folder
	SitePack Folder
	Subfolders
	Files

	StandAlone Folder

	HTML Files
	Errors (E)
	Warnings (W)
	Informational Messages (I)
	Scenario Player Applet Functions
	The JavaScript Utilities Library
	The Rapid Application Library

