
Basic Development Guide
for Open AT® OS v3.13

Revision: 016
 Date: May 2007

©Confidential Page: 1 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

Basic Development Guide for
Open AT® OS v3.13

Reference: WM_ASW_OAT_UGD_00002
Revision: 016

Date: May 3, 2007

Basic Development Guide for Open AT® OS v3.13

©Confidential Page: 2 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

Trademarks

®, WAVECOM®, Wireless CPU®, Wireless Microprocessor, Open AT® and certain
other trademarks and logos appearing on this document, are filed or registered
trademarks of Wavecom S.A. in France or in other countries. All other company
and/or product names mentioned may be filed or registered trademarks of their
respective owners.

Copyright

This manual is copyrighted by WAVECOM with all rights reserved. No part of this
manual may be reproduced in any form without the prior written permission of
WAVECOM.
No patent liability is assumed with respect to the use of the information contained
herein.

Basic Development Guide for Open AT® OS v3.13

©Confidential Page: 3 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

Overview

This User Guide describes the Open AT® facility and provides guidelines for
developing an Embedded Application. It applies to v3.13 and higher (until next
version of this document).

Basic Development Guide for Open AT® OS v3.13

©Confidential Page: 4 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

Document History

Revision Date History
007 November 4, 2003 Updates Open AT® 2.10.

008 30/01/04 Updates for Open AT® 2.10a release.

009 11/06/04 Updates for Open AT® 3.0 and AT X50 release.

010 06/12/04 Updates for Open AT® 3.01

011 30/05/05 Updates for Open AT® 3.02

012 13/06/05 Updates for Open AT® 3.10

013 October 13, 2006 Update for V3.12

014 November 2, 2006 Update

015 February 23, 2007 Update for OS v3.13
Tracker DEV38484 see section 3.9.2

016 May 3, 2007 Small Updates

Basic Development Guide for Open AT® OS v3.13

©Confidential Page: 5 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

Table of Contents

1 Introduction..11

1.1 References.. 11
1.2 Glossary ... 11
1.3 Abbreviations ... 12

2 Description ...13

2.1 Software Architecture... 13
2.1.1 Software Organization .. 13
2.1.2 Software Supplied by Wavecom ... 14

2.2 Minimum Embedded Application Code... 15
2.3 Open AT®Notes on Memory Management .. 15
2.4 Known Limitations.. 16

2.4.1 Command Pre-Parsing Limitation.. 16
2.4.2 Missing Unsolicited Messages in Remote Application............................. 16

2.5 Minimum Embedded Application Code... 16
2.6 Security .. 17

2.6.1 Software Security ... 17
2.6.2 Hardware Security .. 18

3 API ..19

3.1 Data Types ... 19
3.2 Mandatory Functions ... 19

3.2.1 Required Header ... 19
3.2.2 Task identifiers.. 19
3.2.3 Task table ... 20
3.2.4 Stack Initialization... 20
3.2.5 The Init Functions ... 21
3.2.6 The Parser Functions .. 22

3.3 AT Command API ... 29
3.3.1 Required Header ... 29
3.3.2 The wm_atSendCommand Function ... 29
3.3.3 The wm_atSendCommandExt Function .. 29
3.3.4 The wm_atUnsolicitedSubscription Function .. 33
3.3.5 The wm_atIntermediateSubscription Function .. 35
3.3.6 The wm_atCmdPreParserSubscribe Function.. 37
3.3.7 The wm_atRspPreParserSubscribe Function ... 39

Basic Development Guide for Open AT® OS v3.13

©Confidential Page: 6 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.3.8 The wm_atSendRspExternalApp Function .. 42
3.3.9 The wm_atSendRspExternalAppExt Function ... 42
3.3.10 The wm_atSendUnsolicitedExternalApp Function 43
3.3.11 The wm_atSendUnsolicitedExternalAppExt Function 44
3.3.12 The wm_atSendIntermediateExternalApp Function................................. 44
3.3.13 The wm_atSendIntermediateExternalAppExt Function 45

3.4 Debug API .. 46
3.4.1 Required Header ... 46
3.4.2 The wm_osDebugTrace Function.. 46
3.4.3 The wm_osDebugFatalError Function ... 47
3.4.4 The wm_osDebugEraseAllBacktraces Function 48
3.4.5 The wm_osDebugInitBacktracesAnalysis Function 48
3.4.6 The wm_osDebugRetrieveBacktrace Function... 49

3.5 Memory API (OS API abstract).. 50
3.5.1 Required Header ... 50
3.5.2 The wm_osStartTimer Function .. 50
3.5.3 The wm_osStopTimer Function .. 51
3.5.4 The wm_osStartTickTimer Function.. 51
3.5.5 The wm_osStopTickTimer Function .. 52
3.5.6 Important Note on Data Flash Management ... 53
3.5.7 The wm_osWriteFlashData Function... 53
3.5.8 The wm_osReadFlashData Function ... 54
3.5.9 The wm_osGetLenFlashData Function .. 54
3.5.10 The wm_osDeleteFlashData Function ... 55
3.5.11 The wm_osGetAllowedMemoryFlashData Function 55
3.5.12 The wm_osGetFreeMemoryFlashData Function 55
3.5.13 The wm_osGetUsedMemoryFlashData Function..................................... 56
3.5.14 The wm_osDeleteAllFlashData Function ... 56
3.5.15 The wm_osDeleteRangeFlashData Function.. 56
3.5.16 The wm_osGetHeapMemory Function .. 57
3.5.17 The wm_osReleaseHeapMemory Function.. 57
3.5.18 The wm_osGetRamInfo Function .. 58
3.5.19 The wm_osSuspend function.. 58
3.5.20 The wm_osGetTask Function .. 59
3.5.21 The wm_osSendMsg Function.. 59
3.5.22 Example: Managing Data Flash Objects.. 60
3.5.23 Example: RAM management .. 60

3.6 Flow Control Manager API.. 61
3.6.1 Required Header ... 61
3.6.2 The wm_fcmFlow_e type .. 61
3.6.3 The wm_fcmIsAvailable Function.. 61
3.6.4 The wm_fcmOpen Function .. 62
3.6.5 The wm_fcmClose Function .. 63
3.6.6 The wm_fcmSubmitData Function.. 64
3.6.7 Receive Data Blocks.. 66
3.6.8 The wm_fcmCreditToRelease Function ... 67
3.6.9 The wm_fcmQuery Function ... 67

3.7 Input Output API .. 69

Basic Development Guide for Open AT® OS v3.13

©Confidential Page: 7 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.7.1 Required Header ... 69
3.7.2 AT/FCM Ports related functions .. 69
3.7.3 GPIO API... 74

3.8 GPRS API.. 86
3.8.1 GPRS Overview... 86
3.8.2 The wm_gprsAuthentification function ... 88
3.8.3 The wm_gprsIPCPInformations function ... 89
3.8.4 The wm_gprsOpen function.. 89
3.8.5 The wm_gprsClose function.. 90

3.9 BUS API.. 91
3.9.1 Required Header ... 91
3.9.2 Returned values definition... 91
3.9.3 The wm_busOpen Function .. 92
3.9.4 The wm_busClose Function .. 97
3.9.5 The wm_busWrite Function .. 98
3.9.6 The wm_busRead Function... 100
3.9.7 Error codes values... 102

3.10 Scratch Memory API... 102
3.10.1 Required Header ... 102
3.10.2 Returned values definition... 103

3.11 Lists management API.. 103
3.11.1 Required Header ... 103
3.11.2 Types definition .. 103
3.11.3 The wm_lstCreate Function... 104
3.11.4 The wm_lstDestroy Function... 104
3.11.5 The wm_lstClear Function... 105
3.11.6 The wm_lstGetCount Function.. 105
3.11.7 The wm_lstAddItem Function ... 106
3.11.8 The wm_lstInsertItem Function... 106
3.11.9 The wm_lstGetItem Function .. 107
3.11.10 The wm_lstDeleteItem Function.. 107
3.11.11 The wm_lstFindItem Function... 108
3.11.12 The wm_lstFindAllItem Function... 108
3.11.13 The wm_lstFindNextItem Function.. 109
3.11.14 The wm_lstResetItem Function ... 110

3.12 Sound API .. 111
3.12.1 Required header.. 111
3.12.2 The wm_sndTonePlay Function .. 111
3.12.3 The wm_sndTonePlayExt Function ... 113
3.12.4 The wm_sndToneStop Function.. 115
3.12.5 The wm_sndDtmfPlay Function .. 116
3.12.6 The wm_sndDtmfStop Function.. 117
3.12.7 The wm_sndMelodyPlay Function .. 118
3.12.8 The wm_sndMelodyStop Function.. 120

3.13 Standard Library ... 121
3.13.1 Required Header ... 121
3.13.2 Standard C function set .. 121

Basic Development Guide for Open AT® OS v3.13

©Confidential Page: 8 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.13.3 String processing function set .. 121
3.14 Application & Data storage API .. 123

3.14.1 Required Header ... 123
3.14.2 Returned values definition... 123
3.14.3 The wm_adAllocate Function .. 124
3.14.4 The wm_adRetrieve Function.. 124
3.14.5 The wm_adFindInit Function... 125
3.14.6 The wm_adFindNext Function .. 125
3.14.7 The wm_adWrite Function .. 126
3.14.8 The wm_adFinalise Function... 126
3.14.9 The wm_adResume Function.. 127
3.14.10 The wm_adInfo Function .. 127
3.14.11 The wm_adDelete Function... 128
3.14.12 The wm_adStats Function .. 128
3.14.13 The wm_adSpaceState Function... 129
3.14.14 The wm_adFormat Function ... 129
3.14.15 The wm_adRecompactInit Function .. 130
3.14.16 The wm_adRecompact Function ... 130
3.14.17 The wm_adInstall Function ... 131

3.15 [Deprecated] WAP API.. 131
3.16 GPS API.. 132

3.16.1 Required Header ... 132
3.16.2 The wm_gpsGetPosition Function... 132
3.16.3 The wm_gpsGetSpeed Function ... 133
3.16.4 The wm_gpsGetSatview Function... 134

3.17 RTC API .. 135
3.17.1 Required Header ... 135
3.17.2 RTC related types.. 135
3.17.3 The wm_rtcGetTime Function ... 136
3.17.4 The wm_rtcConvertTime function ... 136

3.18 DAC API ... 138
3.18.1 Required header.. 138
3.18.2 The wm_dacOpen Function .. 138
3.18.3 The wm_dacWrite Function .. 139
3.18.4 The wm_dacClose Function .. 140

4 Functioning...141

4.1 Standalone External Application ... 141
4.2 Embedded Application in Standalone Mode.. 143
4.3 Cooperative Mode... 147

4.3.1 Command Pre-Parsing Subscription Mechanism:
WM_AT_CMD_PRE_EMBEDDED_TREATMENT.. 148
4.3.2 Command Pre-Parsing Subscription Process:
WM_AT_CMD_PRE_BROADCAST ... 152

Basic Development Guide for Open AT® OS v3.13

©Confidential Page: 9 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

4.3.3 Response Pre-Parsing Subscription Process:
WM_AT_RSP_PRE_EMBEDDED_TREATMENT ... 156
4.3.4 Response Pre-Parsing Subscription Process:
WM_AT_RSP_PRE_BROADCAST... 160
4.3.5 Example: Embedded Application Using
the Different Functioning Modes .. 163

Basic Development Guide for Open AT® OS v3.13

©Confidential Page: 10 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

List of Figures

Figure 1: General software architecture ..13
Figure 2: Reset hardware security example ..18
Figure 3: Parallel bus chronogram ..96
Figure 4: Standalone external application function141
Figure 5: Embedded Application in standalone mode function......................143
Figure 6: WM_AT_CMD_PRE_EMBEDDED_TREATMENT...............................148
Figure 7: WM_AT_CMD_PRE_BROADCAST...152
Figure 8: WM_AT_RSP_PRE_EMBEDDED_TREATMENT156
Figure 9: WM_AT_RSP_PRE_BROADCAST ..160

Basic Development Guide for Open AT® OS v3.13

Introduction

©Confidential Page: 11 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

1 Introduction

1.1 References

I. Tools Manual (Ref WM_ASW_OAT_UGD_018)
II. AT Command Interface Guide for Open AT® Firmware v6.57c (for AT OS6.57c:

ref WM_ASW_OAT_UGD_00044)

1.2 Glossary

Application Mandatory API Mandatory software interfaces to be used by
the Embedded Application.

AT commands Set of standard modem commands.

AT function Software that processes the AT commands
and AT subscriptions.

Embedded API layer Software developed by Wavecom, containing
the Open AT® APIs (Application Mandatory
API, AT Command Embedded API, OS API,
Standard API, FCM API, IO API, and BUS API).

Embedded Application User application sources to be compiled and
run on a Wavecom product.

Embedded Core software Software that includes the Embedded
Application and the Wavecom library.

Embedded software User application binary: set of Embedded
Application sources + Wavecom library.

External Application Application external to the Wavecom product
that sends AT commands through the serial
link.

Target Open AT® compatible product supporting an
Embedded Application.

Target Monitoring Tool Set of utilities used to monitor a Wavecom
product.

Receive command
pre−parsing

Process for intercepting AT responses.

Send command pre−parsing Process for intercepting AT commands.

Standard API Standard set of "C" functions.

Basic Development Guide for Open AT® OS v3.13

Introduction

©Confidential Page: 12 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

Wavecom library Library delivered by Wavecom to interface
Embedded Application sources with Wavecom
Core Software functions.

Wavecom Core Software Set of GSM and open functions supplied to
the User.

1.3 Abbreviations

API Application Programming Interface

CPU Central Processing Unit

IR Infrared

KB Kilobyte

OS Operating System

PDU Protocol Data Unit

RAM Random-Access Memory

ROM Read-Only Memory

RTK Real-Time Kernel

SMA Small Adapter

SMS Short Message Services

SDK Software Development Kit

Basic Development Guide for Open AT® OS v3.13

Description

©Confidential Page: 13 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

2 Description

2.1 Software Architecture

2.1.1 Software Organization

The Open AT® facility is a software mechanism. It relies on the following software
architecture:

WAVECOM MODULE

Wavecom Core Software (1 binary file)

Embedded Core Software (1 binary file)

Embedded API layer

Application
Mandatory API

AT Cmd
API

Standard
API

OS
API

Embedded Application

FCM
API

IO
API

BUS
API

Wavecom Library

List
API

GPRS
API

Sound
API

Figure 1: General software architecture

Basic Development Guide for Open AT® OS v3.13

Description

©Confidential Page: 14 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

The different software elements on a Wavecom product are described here-below:

The Embedded Core Software (binary file) includes the following items:

 the Embedded Application: application to be developed and downloaded into
the Wavecom Target product. The Embedded Application must be linked to the
Wavecom library.

 the Wavecom library: software library provided by Wavecom (included in the

Open AT® SDK) and based on the Embedded API layer.

 the Embedded API Layer (developed by Wavecom), which includes:

• the Application Mandatory API : mandatory software interfaces to be used by
the Embedded Application,

• the AT Command API : software interfaces providing access to the set of AT
functions,

• the OS API : software interfaces providing access to the Operating System
functions,

• the FCM API : software interfaces providing access to the Flow Control
Manager functions (secure access to V24 and Data IO flows),

• the IO API : software interfaces providing control on the serial link mode, and
on the Gpio devices,

• the GPRS API : software interfaces providing access to the GPRS service (for
authentication and IPCP information),

• the BUS API : software interfaces providing control on bus devices (as SPI or
I2C bus),

• the List API : set of list processing functions.
• the Sound API: set of sound processing functions
• the Standard API : standard set of "C" functions, in addition of some string

processing functions,

The Wavecom Core Software (another binary file), manages the GSM protocol.

2.1.2 Software Supplied by Wavecom

The software items supplied are as follows:
 one software library, wmopenat.lib,
 one set of header files (.h), defining the Open AT® API functions,
 source code samples,
 a set of tools called Development ToolKit, for designing and testing any

application (see document [Ref I]).

Basic Development Guide for Open AT® OS v3.13

Description

©Confidential Page: 15 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

2.2 Minimum Embedded Application Code

The following code must be included in any Embedded Application:

u32 wm_apmCustomStack [256];
/* the value 256 is an example */
const u16 wm_apmCustomStackSize = sizeof (wm_apmCustomStack;

s32 wm_apmAppliInit (wm_apmInitType_e InitType)
{
 return OK;
}

s32 wm_apmAppliParser (wm_apmMsg_t * Message)
{
 return OK;
}

wm_apmCustomStack and wm_apmCustomStackSize are two mandatory variables, used to
define the application call stack size (see § 3.2.4).

wm_apmAppliInit() is a mandatory function; this is the first function called at the
Embedded Application initialization (see § 3.2.3).

wm_apmAppliParser() is a mandatory function; it is called each time the Embedded
Application receives a message from the Wavecom Core Software (see § 3.2.4).

Important Remark : in former Open AT® versions, the wm_apmCustomStack variable was
declared as an u8 table. This is modified since version 2, when wm_apmCustomStack
became an u32 table, for memory alignment compatibility purpose with ADS
compiler.

2.3 Open AT®Notes on Memory Management

The Embedded software runs within an RTK task: the user must define the size of the
customer application call stack.

The Wavecom Core Software and the Embedded Application manage their own RAM
area. Any access from one of these programs to the other’s RAM area is prohibited
and causes a reboot.

Global variables, call stack and dynamic memory are all part of the RAM allocated to
the Embedded Application.

The available memory sizes are for 32 Mbits flash size products (‘B’ WISMO module
series):

 768 Kbytes of ROM
(configurable; see AT+WOPEN command)

Basic Development Guide for Open AT® OS v3.13

Description

©Confidential Page: 16 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

 128 Kbytes of RAM
 128 Kbytes of Flash Object Data
 768 Kbytes of Application & Data Storage Volume

(configurable; see AT+WOPEN command)

2.4 Known Limitations

2.4.1 Command Pre-Parsing Limitation

In normal operating mode "command mode", the target serial link manager checks to
see whether every command starts with "AT" and ends with a carriage return and
end-of-line chars. Therefore, the only commands to be dispatched to the Embedded
Application (in case of command pre-parsing subscription) are the ones complying
with the here-above description.

Note:
If you want to receive particular commands which are not AT commands (starting
with another thing than "AT"), you can use the "data mode" to send and receive these
commands into the Embedded Application (see the Flow Control Manager API).

2.4.2 Missing Unsolicited Messages in Remote Application

In Remote Application Execution mode, the application is started a few seconds after
the Target. Therefore, some unsolicited events might be lost.

A pre-processor flag like __REMOTETASKS__ can be used to add some specific code
for remote mode.

2.5 Minimum Embedded Application Code

The following code must be included in any Embedded Application:

const wm_apmTask_t wm_apmTask [WM_APM_MAX_TASK] =
{
{ StackSize1, Stack1, InitFct1, ParserFct1 },
{ StackSize2, Stack2, InitFct2, ParserFct2 },
{ StackSize3, Stack3, InitFct3, ParserFct3 }
};

StackX and StackSizeX are variables used to define the application tasks call stack
size (see § 3.2.4: "Stack Initialization").

InitFctX() are functions which are the first called ones for each Embedded
Application task (see § 3.2.5: The Init Functions).

Basic Development Guide for Open AT® OS v3.13

Description

©Confidential Page: 17 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

ParserFctX() are functions which are called each time an Embedded Application task
receives a message from the Wavecom Core Software (see § 3.2.6: "The Parser
Functions").

2.6 Security

2.6.1 Software Security

Two software safeguards are used in the Open AT® platform:
o RAM access protection
o watchdog protection.

After reboot, the "Init ()" function of each task will have its parameter set to
WM_APM_REBOOT_FROM_EXCEPTION.

After a reboot caused by a soware crash, the application is started only 20 seconds
after the start of the Wavecom Core software. This allows at least 20 seconds delay
to re-download a new application.
In case of normal reboot, the application restars immediately.

2.6.1.1 RAM Access Protection

A specific RAM area is allocated to the Embedded Application.
The Embedded Application is seen as a Real-Time Task in the Wavecom software,
and each time this task runs, the Wavecom RAM protection is activated.
If the Embedded Application tries to access this RAM, then an exception occurs and
the software reboots.

In case of illegal RAM access, the Target Monitoring Tool screen displays: "ARM
exception 1 xxx," where "xxx" is the address the application was attempting to
access.

If the symbol file is correctly configured in the Target Monitoring Tool (see document
[Ref I]), then a Back Trace must describe the affected "C" functions in which the crash
occurred.

2.6.1.2 Watchdog Protection

The Embedded Application software is protected from reaching a dead-end lock by a
8 seconds watchdog.
In case of a crash, the software reboots.
If an Embedded Application crash is detected, the Target Monitoring Tool screen
displays: "Customer watchdog."

Basic Development Guide for Open AT® OS v3.13

Description

©Confidential Page: 18 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

2.6.2 Hardware Security

Protection can also be improved using an external watchdog reset circuitry.
With such a hardware watchdog protection, the Wavecom product will always be
reset even in case of the software crashes.

To achieve this, one can use a GPO connected to a specific hardware counter that
will reset the product if not refreshed.

For example, this specific hardware can be a counter with a specific counter output
connected to the reset pin of the module, and the counter reset pin connected to a
GPO.
In this way, the software in the module is supposed to reset the counter periodically.
If not, the counter will increase until it reaches the specified limit and then resets the
module.

Module
Counter

GPO
Reset

Reset

Counter
outputs

Figure 2: Reset hardware security example

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 19 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3 API

3.1 Data Types

The available data types are described in the wm_types.h file. They ensure
compatibility with the data types used in the functional prototypes and are used for
both Target and Visual C++ generation.

3.2 Mandatory Functions

The API described below includes a set of functions the Embedded software must
supply and some mandatory variables the Embedded software must set.
This API is located in the wm_apm.h file.

3.2.1 Required Header

An Open AT® application must include the wm_apm.h header file.
This file includes all other APIs’ header files.

3.2.2 Task identifiers

The several embedded application tasks are defined by identifiers, based on the
following type :

typedef enum
{
 WM_OS_TASK_1, // Task 1
 WM_OS_TASK_2, // Task 2
 WM_OS_TASK_3, // Task 3

 WM_OS_TASK_MAX, // Maximum number of tasks
 WM_OS_TASK_WAVECOM=0xFF // for messages coming from Wavecom Core

Software
} wm_osTask_e;

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 20 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.2.3 Task table

The task table is used to define the embedded application tasks parameters, using the
following type :

typedef struct
{
 u32 StackSize; /* Stack Size (in bytes) */
 u32 Stack; / Stack pointer */
 s32 (*Init) (wm_apmInitType_e); /* Initialisation function */
 s32 (*Parser) (wm_apmMsg_t *); /* Parser function */
} wm_apmTask_t;

The table has to be defined by the application as below :

const wm_apmTask_t wm_apmTask [WM_APM_MAX_TASK] =
{

{ StackSize1, Stack1, Init1, Parser1 },
{ StackSize2, Stack2, Init2, Parser2 },
{ StackSize3, Stack3, Init3, Parser3 }

};

Note: to use less than 3 tasks, the additionnal tasks parameters must be set to 0 in
the wm_apmTask table.

3.2.4 Stack Initialization

The following variables are used to define each task stack size :

#define StackSize1 1024 // The ‘1024’ value is an example
#define StackSize2 1024 // The ‘1024’ value is an example
#define StackSize3 1024 // The ‘1024’ value is an example

u32 Stack1 [StackSize1 / 4];
u32 Stack2 [StackSize2 / 4];
u32 Stack3 [StackSize3 / 4];

These data represent the amount of memory needed by each task call stack.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 21 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.2.5 The Init Functions

The Init functions are called only once for each embedded application task during
initialization.

Their prototype is:

s32 Init (wm_apmInitType_e InitType);

3.2.5.1 Parameter

InitType:
Works out the item that triggered the initialization. The corresponding values
are:

typedef enum
{

WM_APM_POWER_ON, // normal Power On has occurred
WM_APM_REBOOT_FROM_EXCEPTION, // the module has restarted after an

exception.
WM_APM_DOWNLOAD_SUCCESS, // an install process launched by the

wm_adInstall API has succeded.
WM_APM_DOWNLOAD_ERROR // an install process launched by the

wm_adInstall API has failed.
} wm_apmInitType_e;

The following events may cause an exception:

• a call to the wm_osDebugFatalError() function,
• unauthorized RAM access,
• a customer task watchdog.

3.2.5.2 Return Value

The returned value is not relevant.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 22 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.2.6 The Parser Functions

The Parser functions are called whenever a message is received by an embedded
application task from the Wavecom Core Software.

Their prototype is:

s32 Parser (wm_apmMsg_t * Message);

3.2.6.1 Parameter

Message:
The Message structure depends on its type:

typedef struct
{

s16 MsgTyp; /* Type of the received message: works out
the associated structure of the message
body part*/

wm_apmBody_t Body; /* Specific message body */
} wm_apmMsg_t;

MsgTyp may have the following values:

MsgTyp value Description

WM_AT_RESPONSE the message includes an AT command
response sent by the Embedded
Application.

WM_AT_UNSOLICITED the message includes an unsolicited AT
response.

WM_AT_INTERMEDIATE the message includes an intermediate
AT response.

WM_AT_CMD_PRE_PARSER the message includes an AT command
sent by the External Application.

WM_AT_RSP_PRE_PARSER the message includes a response
processed by a Wavecom Core
Software AT function.

WM_OS_TIMER the message is sent when the timer
expires.

WM_OS_RELEASE_MEMORY the message includes the address of a
released pointer.

WM_FCM_RECEIVE_BLOCK the message includes data received by
the Embedded Application.

WM_FCM_OPEN_FLOW the requested flow opening operation is
successful.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 23 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

MsgTyp value Description

WM_FCM_CLOSE_FLOW the requested flow closing operation is
successful.

WM_IO_PORT_UPDATE_INFO Informs the Open AT® application that
either a new port has been opened, or
an existing port has been closed.

WM_FCM_RESUME_DATA_FLOW the Embedded Application may resume
its data sending operations.

WM_IO_SERIAL_SWITCH_STATE_RSP includes the response to the serial link
mode switching request.

The body structure is given hereafter:

typedef union
{

/* Includes herein the different specific structures associated to
 MsgTyp */

 /* WM_AT_RESPONSE */
 wm_atResponse_t ATResponse;
 /* WM_AT_UNSOLICITED */
 wm_atUnsolicited_t ATUnsolicited;
 /* WM_AT_INTERMEDIATE */
 wm_atIntermediate_t ATIntermediate;
 /* WM_AT_CMD_PRE_PARSER */
 wm_atCmdPreParser_t ATCmdPreParser;
 /* WM_AT_RSP_PRE_PARSER */
 wm_atRspPreParser_t ATRspPreParser
 /* WM_OS_TIMER */

 wm_osTimer_t OSTimer;
 /* WM_OS_RELEASE_MEMORY */
 wm_osRelease_t OSRelease;
 /* WM_FCM_RECEIVE_BLOCK */
 wm_fcmReceiveBlock_t FCMReceiveBlock;
 /* WM_FCM_OPEN_FLOW */
 wm_fcmOpenFlow_t FCMOpenFLow
 /* WM_FCM_CLOSE_FLOW */
 u32 FCMCloseFlow

 /* WM_FCM_RESUME_DATA_FLOW */
 u32 FCMResumeFlow

 /* WM_IO_SERIAL_SWITCH_STATE_RSP */
 wm_ioSerialSwitchStateRsp_t IOSerialSwitchStateRsp
 /* WM_IO_PORT_UPDATE_INFO */
 wm_ioPortUpdateInfo_t IOPortUpdateInfo
} wm_apmBody_t;

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 24 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

The sub-structures of the message body are listed below:

Body for WM_AT_RESPONSE:

typedef struct
{
 wm_atSendRspType_e Type;
 wm_ioPort_e Dest;
 u16 StrLength; /* Length of StrData[] */
 ascii StrData[1]; /* AT response */
} wm_atResponse_t;

typedef enum
{
 WM_AT_SEND_RSP_TO_EMBEDDED,
 WM_AT_SEND_RSP_TO_EXTERNAL,
 WM_AT_SEND_RSP_BROADCAST
} wm_atSendRspType_e;

(See § 3.3.3 for wm_atSendRspType_e description).

Body for WM_AT_UNSOLICITED:

typedef struct {
 wm_atUnsolicited_e Type;
 u16 StrLength;
 ascii StrData[1];
} wm_atUnsolicited_t;

typedef enum {
 WM_AT_UNSOLICITED_TO_EXTERNAL,
 WM_AT_UNSOLICITED_TO_EMBEDDED,
 WM_AT_UNSOLICITED_BROADCAST
} wm_atUnsolicited_e;

(See § 3.3.4 for wm_atUnsolicited_e description).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 25 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

Body for WM_AT_INTERMEDIATE:

typedef struct
{
 wm_atIntermediate_e Type;
 wm_ioPort_e Dest;
 u16 StrLength;
 ascii StrData[1];
} wm_atIntermediate_t;

typedef enum
{
 WM_AT_INTERMEDIATE_TO_EXTERNAL,
 WM_AT_INTERMEDIATE_TO_EMBEDDED,
 WM_AT_INTERMEDIATE_BROADCAST
} wm_atIntermediate_e;

(See § 3.3.5 for wm_atIntermediate_e description).

Body for WM_AT_CMD_PRE_PARSER:

typedef struct {
 wm_atCmdPreSubscribe_e Type;
 wm_ioPort_e Source;
 u16 StrLength;
 ascii StrData[1];
} wm_atCmdPreParser_t;

typedef enum {
 WM_AT_CMD_PRE_WAVECOM_TREATMENT,
 WM_AT_CMD_PRE_EMBEDDED_TREATMENT,
 WM_AT_CMD_PRE_BROADCAST,
 WM_AT_CMD_PRE_APP_CONTROL_WAVECOM,
 WM_AT_CMD_PRE_APP_CONTROL_EMBEDDED
} wm_atCmdPreSubscribe_e;

(See § 3.3.6 for wm_atCmdPreSubscribe_e description).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 26 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

Body for WM_AT_RSP_PRE_PARSER:

typedef struct {
wm_atRspPreSubscribe_e Type;
wm_ioPort_e Dest;
u16 StrLength;
ascii StrData[1];

} wm_atRspPreParser_t;

typedef enum {

WM_AT_RSP_PRE_WAVECOM_TREATMENT, /* Default value */
WM_AT_RSP_PRE_EMBEDDED_TREATMENT,
WM_AT_RSP_PRE_BROADCAST

} wm_atRspPreSubscribe_e;

Dest field (based on following type), is the destination port where the
response is to be sent.

typedef enum
{

WM_IO_UART1,
WM_IO_UART2,
WM_IO_USB

} wm_ioPort_e;

(See § 3.3.7 for wm_atRspPreSubscribe_e description).

Body for WM_OS_TIMER:

typedef struct {
 u8 Ident; /* Timer identifier */
} wm_osTimer_t;

(See § 3.5.2 for timer identifier description).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 27 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

Body for WM_OS_RELEASE_MEMORY:

typedef struct {
 void *pMemoryBlock;
} wm_osRelease_t;

Body for WM_FCM_RECEIVE_BLOCK:

typedef struct {
u32 Reserved3;
u16 DataLength; /* number of bytes received */
u8 Reserved1[2];
wm_fcmFlow_e FlowId; /* IO flow ID */
u8 Reserved2[7];
u8 Data[1]; /* data received */
} wm_fcmReceiveBlock_t;
 (See § 3.6.7 for wm_fcmReceiveBlock_t description and § 3.6.2 for
wm_fcmFlow_e description).

Body for WM_FCM_OPEN_FLOW:

typedef struct {
u32 FlowId; /* opened IO flow ID */
u16 DataMaxToSend; /* max length of sent data */
} wm_fcmOpenFlow_t;
 (See § 3.6.4 for wm_fcmOpenFlow_t description and § 3.6.2 for
wm_fcmFlow_e description).

Body for WM_FCM_CLOSE_FLOW:

(See § 3.6.5 for wm_fcmCloseFlow_t description and§ 3.6.2 for
wm_fcmFlow_e description).

Body for WM_FCM_RESUME_DATA_FLOW:

(See § 3.6.2 for wm_fcmFlow_e description).

Body for WM_IO_SERIAL_SWITCH_STATE_RSP:

typedef struct {
 wm_ioSerialSwitchState_e SerialMode; /* mode requested */
 s8 RequestReturn; /* <0 means error */
} wm_ioSerialSwitchStateRsp_t;

(See § 3.7.2.2 for wm_ioSerialSwitchStateRsp_t description).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 28 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

Body for WM_IO_SERIAL_SWITCH_STATE_RSP:

typedef struct
{
 wm_ioSerialSwitchState_e SerialMode; // mode requested
 s8 RequestReturn; // <0 means error
 wm_ioPort_e Port; // required port
} wm_ioSerialSwitchStateRsp_t;

(See § 3.7.2.2 for wm_ioSerialSwitchStateRsp_t description).

Body for WM_IO_PORT_UPDATE_INFO:

typedef struct
{
 wm_ioPort_e Port; // Port identifier
 wm_ioPortUpdateType_e Update; // Update type (Opened/Closed)
} wm_ioPortUpdateInfo_t;

(See § 3.7.2.1 for more information about wm_ioPort_e description).
 The wm_ioPortUpdateType_e type is described below :

typedef enum
{
 WM_IO_PORT_UPDATE_OPENED, // New opened port
 WM_IO_PORT_UPDATE_CLOSED // The port is now closed
} wm_ioPortUpdateType_e;

3.2.6.2 Return Values

The return parameter indicates whether the message has been taken into account
(OK: 0) or not (ERROR: -1).

3.2.6.3 Notes

 any StrData[] or Data[] parameter present in the body sub-structure is
automatically released at the end of the function.

 any StrData[] data is terminated by a 0x00 character and any associated StrLength
includes the 0x00 character.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 29 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.3 AT Command API

3.3.1 Required Header

This API is defined in wm_at.h header file.
This file is included by wm_apm.h.

3.3.2 The wm_atSendCommand Function

This function is just a shortcut to the wm_atSendCommandExt one, with the Dest
parameter always set to the WM_IO_OPEN_AT_VIRTUAL_BASE value. Please refer to
this function description for more information.

3.3.3 The wm_atSendCommandExt Function

The wm_atSendCommand function allows to send AT commands on a required port.

Its prototype is:

void wm_atSendCommandExt (u16 AtStringSize,
wm_atSendRspType_e ResponseType,
ascii *AtString,
wm_ioPort_e Dest);

3.3.3.1 Parameters

AtString
Any AT command string in ASCII character (terminated by a 0x00). Several
strings can be sent at the same time, depending on the type of AT command.

AtStringSize
Size of the previous parameter, AtString. It equals the length + 1 and includes
the 0x00 character.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 30 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

ResponseType:
Indicates which application receives the AT responses. The corresponding
values are:

typedef enum {
 WM_AT_SEND_RSP_TO_EMBEDDED, /* Default value */

 WM_AT_SEND_RSP_TO_EXTERNAL,
 WM_AT_SEND_RSP_BROADCAST
} wm_atSendRspType_e;

WM_AT_SEND_RSP_TO_EMBEDDED means that all the AT responses will be
sent back to the Embedded Application (default mode).

WM_AT_SEND_RSP_TO_EXTERNAL means that all the AT responses will be
sent back to the External Application (PC).

WM_AT_SEND_RSP_BROADCAST means that all the AT responses will be
broadcasted to both the Embedded and External Applications (PC).

Dest:
Specifies the port on which the AT command has to be executed.
Available ports may be opened and closed dynamically by any application (an
external or an Open AT® one).
Each time a port is opened or closed, the Open AT® application receives a
WM_IO_PORT_UPDATE message. The Open AT® application may also use the
wm_ioIsPortAvailable function to know if a specific port is currently available.

Available values for this parameter are listed in the wm_ioPort_e type.
All opened ports (ie. the ones on which the wm_ioIsPortAvailable returns
TRUE) may be used to send an AT command, except the GSM & GPRS based
ones (ie. the ones which have their four MSB set to WM_IO_
GSM_VIRTUAL_BASE or WM_IO_GPRS_VIRTUAL_BASE).

Used with the product physical outputs based ports (ie. all ports except the
WM_IO_OPEN_AT_VIRTUAL_BASE based ones), this parameter will also :

o indicate on which port the responses have to be sent, in
WM_AT_SEND_RSP_TO_EXTERNAL or WM_AT_SEND_RSP_BROADCAST mode.

o select the current port in order to set-up specific parameters (speed with
AT+IPR, character framing with AT+ICF, etc...).

In WM_AT_SEND_RSP_TO_EMBEDDED or WM_AT_SEND_RSP_BROADCAST modes, this Dest
parameter will be copied in the Dest field of the WM_AT_RESPONSE &
WM_AT_INTERMEDIATE messages body structures, for each answer received
in response of the sent AT command.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 31 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.3.3.2 Notes

 As described in the "AT Commands Interface" document, AT commands sent by
wm_atSendCommandExt() begin with the "AT" string, and end with a "\r" character
(carriage return), except in some cases ("A/" command, SMS writing commands
("test\x1A"), …)

 AT Command responses are received by the Embedded Application through a

message. This message is available as a parameter of the wm_apmAppliParser()
function with the MsgTyp parameter set to WM_AT_RESPONSE.

 A response sent to an External Application cannot be pre-parsed .If an Embedded

Application wants to filter or spy the response, it must set the ResponseType
parameter to WM_AT_SEND_RSP_TO_EMBEDDED or
WM_AT_SEND_RSP_BROADCAST.

3.3.3.3 Example: Sending AT Commands and Receiving the Corresponding
Responses

The Embedded Application sends an AT command and receives the response from
the AT functionality of Wavecom Core Software using the wm_atSendCommand (see
§ 3.3.2) and the wm_atSendRspExternalApp (see § 3.3.8) functions.

 Example of sending an AT command:

wm_atSendCommand(16, WM_AT_SEND_RSP_TO_EMBEDDED, "ATD0146290800\r"
);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 32 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

 Example of receiving an AT response:

s32 wm_apmAppliParser (wm_apmMsg_t * Message)
{
 ascii * strBuffer;
 u16 nLenBuffer;

 switch (Message->MsgTyp)
 {
 ….
 case WM_AT_SEND_RSP:

 strBuffer = &(Message->Body.AT_Response.StrData);
 nLenBuffer = Message->Body. AT_Response.StrLength;

 /* Receive AT response for filtering */
 if (Message->Body.ATResponse.Type == AT_RESPONSE_TO_EMBEDDED)

 {
 if (wm_strnicmp(strBuffer, "CONNECT", 7) == 0)
 {
 /* Local processing */
 ….
 wm_atSendRspExternalApp("CONNECT\r", 9);
 }
 else
 {
 /* Don’t modify other responses */
 wm_atSendRspExternalApp (wm_strlen(strBuffer),
 strBuffer);
 }
 }
 /* Receive AT response for spying */
 else if (Message->Body.ATResponse.Type ==
 WM_AT_SEND_RSP_BROADCAST)
 { ...
 }
 /* ERROR */
 else
 { ..
 }
 …
 }
 return OK;
}

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 33 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.3.4 The wm_atUnsolicitedSubscription Function

If the Embedded Application wants to receive an unsolicited AT response (incoming
call, etc.), the wm_atUnsolicitedSubscription function is used to subscribe to the
corresponding service.

Its prototype is:

void wm_atUnsolicitedSubscription (
wm_atUnsolicited_e Unsolicited);

3.3.4.1 Parameter

Unsolicited:
Indicates which application receives the unsolicited AT response. The
corresponding values are:

typedef enum {

WM_AT_UNSOLICITED_TO_EXTERNAL, /* Default value */
WM_AT_UNSOLICITED_TO_EMBEDDED,
WM_AT_UNSOLICITED_BROADCAST

} wm_atUnsolicited_e;

WM_AT_UNSOLICITED_TO_EXTERNAL means any unsolicited AT response
will be sent back to the External Application (PC). This is the default mode.
WM_AT_UNSOLICITED_TO_EMBEDDED means any unsolicited AT response
will be sent back to the Embedded Application.
WM_AT_UNSOLICITED_BROADCAST means any unsolicited AT response will
be broadcast to both the Embedded and External Applications (PC).

3.3.4.2 Note

An unsolicited AT response is received by the Embedded Application through a
message. This message is available as a parameter of the wm_apmAppliParser()
function with MsgTyp parameter set to WM_AT_UNSOLICITED.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 34 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.3.4.3 Example: Receiving Unsolicited AT Responses

The following example deals with the wm_atUnsolicitedSubscription function.

The two stages used to receive unsolicited AT responses are:

1) Subscribing to an Embedded Application to receive unsolicited AT responses.

Three types of subscriptions are available:
• default (WM_AT_UNSOLICITED_TO_EXTERNAL),
• filtering (WM_AT_UNSOLICITED_TO_EMBEDDED) and
• spying (WM_AT_UNSOLICITED_BROADCAST).

An example of a filter subscription is given below:

/* Unsolicited responses are process by Embedded Application */
wm_atUnsolicitedSubscription (WM_AT_UNSOLICITED_TO_EMBEDDED);

2) Receiving unsolicited AT responses:

s32 wm_apmAppliParser (wm_apmMsg_t * Message)
{
 ascii * strBuffer;
 u16 nLenBuffer;

 switch (Message->MsgTyp)
 {
 ….
 case WM_AT_UNSOLICITED:
 strBuffer = &(Message->Body.ATUnsolicited.StrData);
 nLenBuffer = Message->Body.ATUnsolicited.StrLength;

 /* Process unsolicited AT response for filtering */
 if (Message->Body.ATUnsolicited.Type ==
 WM_AT_UNSOLICITED_TO_EMBEDDED)
 {
 /* Embedded processings */
 }

 /* Process unsolicited AT response for spying */
 else if (Message->Body.ATUnsolicited.Type ==
 WM_AT_UNSOLICITED_BROADCAST)
 {
 /* Embedded processings */
 }
 …
 }
 return OK;
}

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 35 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.3.5 The wm_atIntermediateSubscription Function

If the Embedded Application wants to receive an intermediate AT response (alerting
the remote party during a mobile-originated call, SMS reading responses, etc.), the
wm_atIntermediateSubscription function is used to subscribe to the corresponding
service.

Its prototype is:

void wm_atIntermediateSubscription (
wm_atIntermediate_e Intermediate);

3.3.5.1 Parameter

Intermediate:
Indicates which application receives the intermediate AT response. The
corresponding values are:

typedef enum {

WM_AT_INTERMEDIATE_TO_EXTERNAL, /* Default value */
WM_AT_INTERMEDIATE_TO_EMBEDDED,
WM_AT_INTERMEDIATE_BROADCAST

} wm_atIntermediate_e;

WM_AT_INTERMEDIATE_TO_EXTERNAL means any intermediate AT response
will be sent back to the External Application (PC). This is the default mode.
WM_AT_INTERMEDIATE_TO_EMBEDDED means any intermediate AT
response will be sent back to the Embedded Application.
WM_AT_INTERMEDIATE_BROADCAST means any intermediate AT response
will be broadcasted to both the Embedded and External Applications (PC).

3.3.5.2 Note

An intermediate AT response is received by the Embedded Application through a
message. This message is available as a parameter of the wm_apmAppliParser()
function with MsgTyp parameter set to WM_AT_INTERMEDIATE.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 36 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.3.5.3 Example: Receiving Intermediate AT Responses

The following example deals with the wm_atIntermediateSubscription function.
The two stages which are used to receive intermediate AT responses are:

1) Subscribing to an Embedded Application to receive intermediate AT responses.

Three types of subscriptions are available: default
(WM_AT_INTERMEDIATE_TO_EXTERNAL), filtering
(WM_AT_INTERMEDIATE_TO_EMBEDDED) and spying
(WM_AT_INTERMEDIATE_BROADCAST).

An example of a filter subscription is given below:

/* Intermediate responses are processed by Embedded Application */
wm_atIntermediateSubscription (WM_AT_INTERMEDIATE_TO_EMBEDDED);

2) Receiving intermediate AT responses:

s32 wm_apmAppliParser (wm_apmMsg_t * Message)
{
 ascii * strBuffer;
 u16 nLenBuffer;

 switch (Message->MsgTyp)
 {
 ….
 case WM_AT_INTERMEDIATE:
 strBuffer = &(Message->Body.ATIntermediate.StrData);
 nLenBuffer = Message->Body.ATIntermediate.StrLength;

 /* Process intermediate AT response for filtering */
 if (Message->Body.ATIntermediate.Type ==
 WM_AT_INTERMEDIATE_TO_EMBEDDED)
 {
 /* Embedded processing */
 }

 /* Process intermediate AT response for spying */
 else if (Message->Body.ATIntermediate.Type ==
 WM_AT_INTERMEDIATE_BROADCAST)
 {
 /* Embedded processing */
 }
 …
 }
 return OK;
}

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 37 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.3.6 The wm_atCmdPreParserSubscribe Function

If the Embedded Application wants to perform AT command pre-parsing, it should
then subscribe to the corresponding services, using the
wm_atCmdPreParserSubscribe function.
The AT messages received from the External Application are forwarded to the Pre-
parser and sent to the Embedded Application through a WM_AT_CMD_PRE_PARSER
type message, of which the associated structure is wm_atCmdPreParser_t.

Note that, by default, the "AT+WDWL" and "AT+WOPEN" AT commands can not be
pre-parsed, so that the User can download a new Embedded software or stop the
embedded application whenever he wants.
The wm_atCmdPreParserSubscribe function may also be used to pre-parse these
commands, using the WM_AT_CMD_PRE_APP_CONTROL_EMBEDDED option.

The prototype of this function is:

void wm_atCmdPreParserSubscribe (
wm_atCmdPreSubscribe_e SubscribeType);

3.3.6.1 Parameter

SubscribeType:
Indicates what happens when an AT command arrives. The corresponding
values are:

typedef enum {
 WM_AT_CMD_PRE_WAVECOM_TREATMENT, /* Default value */
 WM_AT_CMD_PRE_EMBEDDED_TREATMENT,
 WM_AT_CMD_PRE_BROADCAST,

/* Open AT control commands processing */
 WM_AT_CMD_PRE_APP_CONTROL_WAVECOM, /* Default value */
 WM_AT_CMD_PRE_APP_CONTROL_EMBEDDED
} wm_atCmdPreSubscribe_e;

WM_AT_CMD_PRE_WAVECOM_TREATMENT means the Embedded
Application does not want to filter or spy the commands sent by an External
Application (default mode).
WM_AT_CMD_PRE_EMBEDDED_TREATMENT means the Embedded
Application wants to filter the AT commands sent by an External Application.
WM_AT_CMD_PRE_BROADCAST means the Embedded Application wants to
spy the AT commands sent by an External Application.
WM_AT_CMD_PRE_APP_CONTROL_WAVECOM means the +WOPEN and
+WDWL commands are always processed by the Wavecom core software ;
they can not be filtered by the embedded application (default mode)
WM_AT_CMD_PRE_APP_CONTROL_EMBEDDED means +WDWL and
+WOPEN commands are processed as other ones, and may be pre-parsed by
the embedded application.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 38 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.3.6.2 Notes

 Filtered or spied AT commands are received by the Embedded Application through
a message. This message is available as a parameter of the wm_apmAppliParser()
function with the MsgTyp parameter set to WM_AT_CMD_PRE_PARSER. The
source member of the message is the port on which the command has been
received.

 The Embedded Application will process the received command and, for instance,

will send it back either completely or not to the wm_atSendCommand() function.
Therefore, the responses may be forwarded to the Wavecom Core Software.

 When a command is pre-parsed for filtering, the User has the responsibility to
send the response to the External Application.

 When +WDWL or +WOPEN commands are pre-arsed for filtering, the application
has the responsability to maintain an interface for other applications download
and Open AT® start/stop mode. For exemple, it should filter +WDWL or +WOPEN
command and require a password for download or application stop.

3.3.6.3 Example: Filtering or Spying AT Commands Sent by an External
Application

The following example deals with the wm_atCmdPreParserSubscribe() function.

The two stages which are used to filter or spy AT commands sent by an External
Application are:

1) Subscribing to a command pre−parsing mechanism to filter or spy the AT

commands sent by the External Application.

An example of a filtering subscription is given below:

/* Filter subscription */
wm_atCmdPreParserSubscribe (WM_AT_CMD_PRE_EMBEDDED_TREATMENT);

An example of a spying subscription is given below:

/* Spy subscription */
wm_atCmdPreParserSubscribe(WM_AT_CMD_PRE_BROADCAST);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 39 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

2) Receiving and processing the pre-parsed commands (an AT command sent by the
External Application) in the Embedded Application:

s32 wm_apmAppliParser (wm_apmMsg_t * Message)
{
 ascii * strBuffer;
 u16 nLenBuffer;

 switch (Message->MsgTyp)
 {
 ….
 case WM_AT_CMD_PRE_PARSER:
 strBuffer = &(Message->Body.ATCmdPreParser.StrData);
 nLenBuffer = Message->Body. ATCmdPreParser.StrLength;

 /* Process pre-parsed AT command for filtering */
 if (Message->Body.ATCmdPreParser.Type ==
 WM_AT_CMD_PRE_EMBEDDED_TREATMENT)
 {
 /* Filtering Embedded processings */
 …
 }
 else if (Message->Body.ATCmdPreParser.Type ==
 WM_AT_CMD_PRE_BRAODCAST)
 {
 /* Spying Embedded processing */
 …
 }
 …
 }
 return OK;
}

3.3.7 The wm_atRspPreParserSubscribe Function

If the Embedded Application wants to perform an AT response pre-parsing, it should
then subscribe to the corresponding services, using the
wm_atRspPreParserSubscribe function.
An AT message sent by an External Application and processed by the Wavecom Core
Software generates a response. Depending on the subscription type, this response
may be forwarded to the Embedded Application through a message of the
WM_AT_RSP_PRE_PARSER type of which the associated structure is
wm_atRspPreParser_t.

Its prototype is:

void wm_atRspPreParserSubscribe (
wm_atRspPreSubscribe_e SubscribeType);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 40 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.3.7.1 Parameter

SubscribeType:
Indicates what happens when an AT response arrives. The corresponding
values are as follows:

typedef enum {
 WM_AT_RSP_PRE_WAVECOM_TREATMENT, /* Default value */
 WM_AT_RSP_PRE_EMBEDDED_TREATMENT,
 WM_AT_RSP_PRE_BROADCAST
} wm_atRspPreSubscribe_e;

WM_AT_RSP_PRE_WAVECOM_TREATMENT means the Embedded
Application does not want to filter or spy the responses sent to an External
Application (default mode).

WM_AT_RSP_PRE_EMBEDDED_TREATMENT means the Embedded
Application wants to filter the AT responses sent to an External Application.

WM_AT_RSP_PRE_BROADCAST means the Embedded Application wants to
spy the AT responses sent to an External Application.

3.3.7.2 Notes

 Filtered or spied AT responses are received by the Embedded Application through
a message. This message is available as a parameter of the wm_apmAppliParser()
function with the MsgTyp parameter set to WM_AT_RSP_PRE_PARSER.

 If the Embedded Application subscribes to
WM_AT_RSP_PRE_EMBEDDED_TREATMENT, it will process the response and
send it to the External Application, using the wm_atSendRspExternalApp() function .

 The response pre-parser will only be active if the AT command has not been sent
through wm_atSendCommand(). In this case, the response is processed as described
in the ResponseType parameter.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 41 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.3.7.3 Example: Filtering or Spying AT Responses Sent to the External
Application

The following example deals with the wm_atRspPreParserSubscribe() function.

The two stages used to filter or spy the AT response sent to the External Application
are:

1) Subscribing to the response pre−parsing mechanism in order to filter or spy the AT

response sent to the External Application.

An example of a filter subscription is given below:

/* Filter subscription */
wm_atRspPreParserSubscribe (WM_AT_RSP_PRE_EMBEDDED_TREATMENT);

An example of a spying subscription is given below:

/* Spy subscription */
wm_atRspPreParserSubscribe(WM_AT_RSP_PRE_BROADCAST);

2) Processing the pre-parsed response in the Embedded Application:

s32 wm_apmAppliParser (wm_apmMsg_t * Message)
{
 ascii * strBuffer;
 u16 nLenBuffer;

 switch (Message->MsgTyp)
 {
 ….
 case WM_AT_RSP_PRE_PARSER:
 strBuffer = &(Message->Body.ATRspPreParser.StrData);
 nLenBuffer = Message->Body.ATRspPreParser.StrLength;

 /* Process pre-parsed AT command for filtering */
 if(Message>Body.ATRspPreParser.Type ==
 WM_AT_RSP_PRE_EMBEDDED_TREATMENT)
 {
 /* Filtering Embedded processing */
 …
 }
 else if (Message->Body.ATRspPreParser.Type ==
 WM_AT_RSP_PRE_BRAODCAST) {
 /* Spying Embedded processing */
 …
 }
 …
 }
 return OK;
}

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 42 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.3.8 The wm_atSendRspExternalApp Function

This function is just a shortcut to the wm_atSendRspExternalAppExt one, with the
Dest parameter always set to the WM_IO_UART1 value. Please refer to this function
description for more information.

The response is sent to the UART 1 physical port (if this port is not opened, the
response will not be displayed anywhere).
It is strongly not recommended not to use this function ; the
wm_atSendRspExternalAppExt one have to be used instead.

3.3.9 The wm_atSendRspExternalAppExt Function

The wm_atSendRspExternalAppExt function sends an AT response to the External
Application, in case of AT command pre-parsing.
The response is sent to the required port.

Its prototype is:

void wm_atSendRspExternalAppExt (u16 AtStringSize,
 ascii *AtString,
 wm_ioPort_e Dest);

Note: This function should be used to transmit to the External Application the
responses received by the Embedded Application through WM_AT_RESPONSE
message.

3.3.9.1 Parameters

AtString
Any AT response string in ASCII characters (terminated by a 0x00 character).
This string is sent on the serial link without any change : it should also
include "\r\n" characters at the end and/or at the beginning of the string.

AtStringSize
Size of the previous AtString parameter. It equals the length + 1 since it
includes the 0x00 character.

Dest
Port where to send the provided response.
Available ports may be opened and closed dynamically by any application (an
external or an Open AT® one).
Each time a port is opened or closed, the Open AT® application receives a
WM_IO_PORT_UPDATE message. The Open AT® application may also use the
wm_ioIsPortAvailable function to know if a specific port is currently available.
Available values for this parameter are listed in the wm_ioPort_e type.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 43 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

All opened ports (ie. the ones on which the wm_ioIsPortAvailable returns
TRUE) may be used to send an AT response, except the GSM, GPRS & Open
AT® based ones (ie. the ones which have their four MSB set to WM_IO_
GSM_VIRTUAL_BASE, WM_IO_GPRS_VIRTUAL_BASE or
WM_IO_OPEN_AT_VIRTUAL_BASE ; in this case the response will not be
displayed anywhere).

If the function is used to forward a response received from the WavecomCore
Software to any external application, and if the
WM_AT_SEND_RSP_HIGH_PRIORITY flag is set in the received response, then
this flag has to be provided (through a bitwise OR combination) in the Dest
parameter, in order to respect the response priority level. This flag is mainly
used for the "CONNECT" response, issued just when a port is switched in data
mode during a GSM data call (if this port is not used by the Open AT®
application with the FCM API).

3.3.10 The wm_atSendUnsolicitedExternalApp Function

The wm_atSendUnsolicitedExternalApp function sends an AT unsolicited response to
the External Application.
The Unsolicited response will be sent to all ports.

Its prototype is:

void wm_atSendUnsolicitedExternalApp (u16 AtStringSize,
 ascii *AtString);

3.3.10.1 Parameters

AtString
Any AT unsolicited response string in ASCII characters (terminated by a 0x00
character). This string is sent on the serial link without any change : it should
also include "\r\n" characters at the end and/or at the beginning of the string.

AtStringSize
Size of the previous AtString parameter. It equals the length + 1 since it
includes the 0x00 character.

3.3.10.2 Notes

 An unsolicited response string sent by the wm_atSendUnsolicitedExternalApp
function will only be displayed on the serial link when the Wavecom AT task is not
busy by a command processing. If it is busy in a such processing, the unsolicited
response string is stored, and displayed at the end of the process (after the
terminal AT response).

 Sending an AT response by the wm_atSendRspExternalApp function will display
all previously stored unsolicited responses (after this response display).

 This function should be used to transmit to the External Application the
unsolicited responses received by the Embedded Application through the
WM_AT_UNSOLICITED message.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 44 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.3.11 The wm_atSendUnsolicitedExternalAppExt Function

This function behaves exactly as the wm_atSendUnsolicitedExternalApp one, but
provides an additional parameter in order just to send the unsolicited response on one
specific port, instead of broadcasting it on all ports.

Its prototype is:

void wm_atSendUnsolicitedExternalAppExt (u16 AtStringSize,
 ascii *AtString,
 wm_ioPort_e Dest);

Please note that if the Dest parameter is set to WM_IO_NO_PORT value, the unsolicited
response will be broadcasted on all ports.

3.3.12 The wm_atSendIntermediateExternalApp Function

This function is just a shortcut to the wm_atSendIntermediateExternalAppExt one,
with the Dest parameter always set to the WM_IO_UART1 value. Please refer to this
function description for more information.

The wm_atSendIntermediateExternalApp function sends an AT intermediate response
to the External Application. The response is sent to the UART 1 physical port (if this
port is not opened, the response will not be displayed anywhere).
It is strongly not recommended not to use this function ; the
wm_atSendIntermediateExternalAppExt one have to be used instead.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 45 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.3.13 The wm_atSendIntermediateExternalAppExt Function

The wm_atSendIntermediateExternalApp function sends an AT intermediate response
to the External Application.
The intermediate response will be sent to the required port.

Its prototype is:

void wm_atSendIntermediateExternalAppExt
(u16 AtStringSize,
ascii *AtString,
wm_ioPort_e Dest);

3.3.13.1 Parameters

AtString
Any AT intermediate response string in ASCII characters (terminated by a
0x00 character). This string is sent on the serial link without any change : it
should also include "\r\n" characters at the end and/or at the beginning of the
string.

AtStringSize
Size of the previous AtString parameter. It equals the length + 1 and includes
the 0x00 character.

Dest
Port where to send the provided intermediate response.
Available ports may be opened and closed dynamically by any application (an
external or an Open AT® one).
Each time a port is opened or closed, the Open AT® application receives a
WM_IO_PORT_UPDATE message. The Open AT® application may also use the
wm_ioIsPortAvailable function to know if a specific port is currently available.
Available values for this parameter are listed in the wm_ioPort_e type.
All opened ports (ie. the ones on which the wm_ioIsPortAvailable returns
TRUE) may be used to send an AT intermediate response, except the GSM,
GPRS & Open AT® based ones (ie. the ones which have their four MSB set to
WM_IO_ GSM_VIRTUAL_BASE, WM_IO_GPRS_VIRTUAL_BASE or
WM_IO_OPEN_AT_VIRTUAL_BASE; in this case the intermediate response will
not be displayed anywhere).

3.3.13.2 Notes

 An intermediate response string sent by the wm_atSendIntermediateExternalAppExt
function will always display this string on the serial link, either the Wavecom AT
task is busy on a command processing or not.

 Previously stored unsolicited responses will not be displayed after a call to the

wm_ atSendIntermediateExternalApp function.

 This function should be used to transmit to the External Application the
intermediate responses received by the Embedded Application through the
WM_AT_INTERMEDIATE message.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 46 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.4 Debug API

3.4.1 Required Header

This API is defined in wm_dbg.h header file.
This file is included by wm_apm.h.

3.4.2 The wm_osDebugTrace Function

The wm_osDebugTrace function allows the application to send a debug trace to the
Target Monitoring Tool.

Its prototype is:

s32 wm_osDebugTrace (u8 Level, ascii *Format, ...);

3.4.2.1 Parameters

Level:
Used to differentiate the traces. The Target Monitoring Tool software gives
access to level configuration.

Format:
Used to specify a string and the corresponding formats (like the printf
function), as far as the data to trace is concerned. The supported formats are
‘%c’, ’%x’, ‘%X’, ‘%u’, ‘%d’.
Up to 6 parameters may be included in the Format string.
As the ‘%s’ format is not supported, the way to display an ascii * string is to
replace the Format string by this char, without any other parameters.

…:
Represents the list of data to be traced.

3.4.2.2 Returned values

This function always returns OK

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 47 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.4.2.3 Example: Inserting Debug Information

Debug information is included in the Embedded Application, and therefore it uses
ROM space and CPU resources.
The Target Monitoring Tool is used to display the Debug information.

An example of tracing an informational message is given below:

wm_osDebugTrace (1, "This is an informational message on level 1");
/* To visualise this, the Target Monitoring Tool must be configured to
extract level 1 traces */

/* The result string using the Target Monitoring Tool should be:
 "This is an informational message on level 1" */

Example of tracing an informational message using a decimal parameter:

u8 param =12;

wm_osDebugTrace (2, "This is an informational message on level 2 with 1
parameter =%d", param);
/* To visualise this, the Target Monitoring Tool must be configured to
extract level 2 traces */

/* The result string using the Target Monitoring Tool should be:
 "This is an informational message on level 2 with 1 parameter =12" */

Example of tracing a string:

ascii String[]="Hello World";

wm_osDebugTrace (3, String);
/* To visualise this, the Target Monitoring Tool must be configured to
extract level 3 traces */

/* The result string on Target Monitoring Tool should be:
 "Hello World" */

3.4.3 The wm_osDebugFatalError Function

The wm_osDebugFatalError function allows the application to store a "backtrace" in the
product memory, and to reset it. A backtrace is composed of the provided message,
and a call stack "footprint" taken at the function call time. It is readable by the Target
Monitoring Tool (Please refer to the Tools Manual for more information).

Its prototype is:

s32 wm_osDebugFatalError (const ascii * Message);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 48 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.4.3.1 Parameters

Message:
String to be displayed whenever an error occurs, and to be stored with the
backtrace in the product memory.
Please note that only the string address is stored in the backtrace, so this
parameter has not to be a pointer on a RAM buffer, but a constant string
pointer. Moreover, the string will only be correctly displayed if the current
application is still present in the module’s flash memory. If the application is
erased or modified, the string will not be correctly displayed when retrieving
the backtraces.

3.4.3.2 Returned Value

None: this function will reset the product.

3.4.3.3 Note

The reboot is performed on the call to the fatal error function. In order to ensure the
downloading of a new binary file after a fatal error has been detected, the Open AT®
application software startup is done after a 20 seconds delay.
Therefore, in order not to miss any event, any application has to handle the case of a
startup delay of 20 seconds.
Moreover, in the product reset is due to a fatal error (from Open AT® application, or
from Wavecom Core Software), the Init function’s InitType parameter will be set to
the WM_APM_REBOOT_FROM_EXCEPTION value.

3.4.4 The wm_osDebugEraseAllBacktraces Function

The wm_osDebugEraseAllBacktraces function allows the application to re-initialize the
product backtraces storage place. All the currently stored backtraces will be erased.

Its prototype is:

void wm_osDebugEraseAllBacktraces (void);

3.4.5 The wm_osDebugInitBacktracesAnalysis Function

In order to start backtraces analysis, the wm_osDebugInitBacktracesAnalysis function
have to be called before the first wm_osDebugRetrieveBacktrace function call. Each time
a full backtraces analysis is required to be started, this function has to be called first.

Its prototype is:

s32 wm_osDebugInitBacktracesAnalysis (void);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 49 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.4.5.1 Returned Value

OK on success.
A negative internal error value if an unexpected error occurred.

3.4.6 The wm_osDebugRetrieveBacktrace Function

This function retrieves the next stored backtrace in the product’s memory. Before the
first call to this function, the wm_osDebugInitBacktracesAnalysis function has to be
called in order to initialize the analysis. Successive calls to the
wm_osDebugRetrieveBacktrace function will allow to retrieve all the backtraces, until
the function returns a negative value.

Its prototype is:

s32 wm_osDebugRetrieveBacktrace (u8 * BacktraceBuffer, u16 Size);

3.4.6.1 Parameters

BacktraceBuffer:
Buffer where the backtrace content will be copied. The buffer content will not
be modified if it is not large enough. This parameter may be set to NULL in
order to know the next backtrace buffer required size.

Size:
Backtrace buffer size. The buffer content will not be modified if it is not large
enough. A backtrace buffer size will be at least about 550 bytes, + the stored
message size.

3.4.6.2 Returned Value

OK on success.
A negative internal error value if there is no more backtrace stored in the
product’s memory, or if the wm_osDebugInitBacktracesAnalysis function was
not called yet.

A positive size value, if the BacktraceBuffer argument was set to NULL : the next
backtrace buffer required size is returned (at least 550 bytes, + the stored message
size).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 50 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.5 Memory API (OS API abstract)

3.5.1 Required Header

This API is defined in wm_os.h header file.
This file is included by wm_apm.h.

3.5.2 The wm_osStartTimer Function

The wm_osStartTimer function sets up a timer (in 100ms steps) associated to an
existing TimerId.

Its prototype is:

s32 wm_osStartTimer (u8 TimerId,
bool bCyclic,
u32 TimerValue);

3.5.2.1 Parameters

TimerId:
Timer identifier: the range 0 to WM_OS_MAX_TIMER_ID is accepted.

BCyclic:
This parameter may have one of the following values:

 TRUE: the timer is cyclic and is automatically set up when a cycle is over,
 FALSE: the timer has only one cycle.

TimerValue:

Number of timer units (the timer unit is 100 ms).

3.5.2.2 Return Values

The return parameter is positive or null if the timer is successfully set up and
negativein case of failure.

3.5.2.3 Notes

 The timer expiry indication is received by the Embedded Application through a
message. This message is available as a parameter of the wm_apmAppliParser()
function with the MsgTyp parameter set to WM_OS_TIMER.

 Since the WAVECOM products time granularity is 18.5 ms, the 100 ms steps
are emulated, reaching a value as close as possible to the requested one
(modulo 18.5). For example, if a 20 * 100ms timer is required, the real time
value will be 1998 ms (108 * 18.5ms).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 51 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.5.2.4 Example: Managing a Timer

The range 0 to WM_OS_MAX_TIMER_ID is accepted for the timer Id. A timer may or
may not be cyclic.
An example of setting up a timer is given below:

/* Timer start, not cyclic, value = 1second */
wm_osStartTimer(1, FALSE, 10);

An example of receiving a timer expiry event is given below:

s32 wm_apmAppliParser (wm_apmMsg_t * Message)
{
 ascii * strBuffer;
 u16 nLenBuffer;

 switch (Message->MsgTyp)
 {
 ….
 case WM_OS_TIMER:

 …
 }
 return OK;
}

3.5.3 The wm_osStopTimer Function

The wm_osStopTimer function stops the timer identified by TimerId.
Its prototype is:

s32 wm_osStopTimer (u8 TimerId);

3.5.3.1 Parameter

TimerId:
Timer identifier : the range 0 to WM_OS_MAX_TIMER_ID is accepted.

3.5.3.2 Return Values

The return parameter is the remaining time (in 100 ms steps) if the timer was still
running, and a negative value otherwise.

3.5.4 The wm_osStartTickTimer Function

The wm_osStartTickTimer function sets up a timer (in 18.5 ms ticks steps) associated
to an existing TimerId.

Its prototype is:

s32 wm_osStartTickTimer (u8 TimerId,
bool bCyclic,
u32 TimerValue);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 52 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.5.4.1 Parameters

TimerId:
Timer identifier: the range 0 to WM_OS_MAX_TIMER_ID is accepted.

BCyclic:
This parameter may have one of the following values:

 TRUE: the timer is cyclic and is automatically set up when a cycle is over,
 FALSE: the timer has only one cycle.

TimerValue:

Number of ticks (18.5 ms steps).

3.5.4.2 Return Values

The return parameter is positive or null if the timer is successfully set up and negative
if not.

3.5.4.3 Note

The timer expiry indication is received by the Embedded Application through a
message. This message is available as a parameter of the wm_apmAppliParser()
function with the MsgTyp parameter set to WM_OS_TIMER.

3.5.4.4 Example: Managing a Timer

The range 0 to WM_OS_MAX_TIMER_ID is accepted. A timer may or may not be
cyclic.
An example of setting up a timer is given below:

/* Timer start, not cyclic, value = 37 ms */
wm_osStartTickTimer(1, FALSE, 2);

3.5.5 The wm_osStopTickTimer Function

The wm_osStopTickTimer function stops the timer identified by TimerId.

Its prototype is:
s32 wm_osStopTimer (u8 TimerId);

3.5.5.1 Parameter

TimerId:
Timer identifier: the range 0 to WM_OS_MAX_TIMER_ID is accepted.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 53 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.5.5.2 Return Values

The return parameter is the remaining time (in 18.5 ms tick steps) if the timer
was still running, and a negative value otherwise.

3.5.6 Important Note on Data Flash Management

An embedded application cannot use more than following sizes, according to product
type:

 5KB on 16 Mbits flash size products.
 128 KB on 32 MBits flash size products

A single flash object may use up to 30 Kbytes data.

The identifiers use an u16 value: any value from 0 to 0xFFFF is valid for an object
identifier.
However, due to the internal storage implementation, only up to 2000 object
identifiers can exist at the same time.

3.5.7 The wm_osWriteFlashData Function

The wm_osWriteFlashData function is used to write data into Flash ROM. The
corresponding identifier is assigned to the stored data.

The prototype of this function is:

s32 wm_osWriteFlashData (u16 Id, u16 DataLen, u8 *Data);

3.5.7.1 Parameters

Id:
Identifier assigned to the stored data.

DataLen:
Length of the data to be stored (in bytes).

Data:
Pointer to the data to be stored.

3.5.7.2 Return Values

OK on success
ERROR if:

• There is no more free space
• The object size exceeds 30 Kbytes
• There is no more free identifier (2000 objects limit reached)

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 54 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.5.8 The wm_osReadFlashData Function

The wm_osReadFlashData function is used to read data identified by Id from the
Flash ROM.

Its prototype is:

s32 wm_osReadFlashData (u16 Id, u16 DataLen, u8 *Data);

3.5.8.1 Parameters

Id:
Identifier assigned to the stored data.

DataLen:

Length of the data to be read (in bytes).

Data:
Pointer to the data to be read.

3.5.8.2 Return Values

The return parameter is the length to read and copied to *Data on success, or
ERROR if the object does not exist.

3.5.9 The wm_osGetLenFlashData Function

The wm_osGetLenFlashData function supplies the length of the data stored in Flash
ROM and identified by Id.

Its prototype is:

s32 wm_osGetLenFlashData (u16 Id);

3.5.9.1 Parameter

Id:
Identifier assigned to the stored data.

3.5.9.2 Return Values

The return parameter is the byte length of the data identified by Id, or ERROR
if the object does not exist.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 55 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.5.10 The wm_osDeleteFlashData Function

The wm_osDeleteFlashData function deletes the data stored in Flash ROM and
identified by Id.

Its prototype is:

s32 wm_osDeleteFlashData (u16 Id);

3.5.10.1 Parameter

Id:
Identifier assigned to the stored data.

3.5.10.2 Return Values

The return value is OK on success, ERROR if the object does not exist.

3.5.11 The wm_osGetAllowedMemoryFlashData Function

The wm_osGetAllowedMemoryFlashData function returns the quantity of allocated
memory in Flash ROM.

Its prototype is:

s32 wm_osGetAllowedMemoryFlashData (void);

The return parameter is the quantity of allocated memory in Flash ROM (Unit: bytes).

3.5.12 The wm_osGetFreeMemoryFlashData Function

The wm_osGetFreeMemoryFlashData function returns the quantity of available
memory in Flash ROM.

Its prototype is:

s32 wm_osGetFreeMemoryFlashData (void);

The return parameter is the quantity of free memory (expressed in bytes) in Flash
ROM.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 56 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.5.13 The wm_osGetUsedMemoryFlashData Function

The wm_osGetUsedMemoryFlashData function returns the quantity of used memory
by flash objects between the provided start & end IDs.

Its prototype is:

s32 wm_osGetUsedMemoryFlashData (u16 StartId, u16 EndId);

3.5.13.1 Parameters

StartId:
Range to browse first Id

EndId:

Range to browse last Id

3.5.13.2 Return Values

The return parameter is the quantity of used memory (expressed in bytes) by the
provided Id range in Flash ROM, or ERROR if StartId is greater or equal than Enid .

3.5.14 The wm_osDeleteAllFlashData Function

The wm_osDeleteAllFlashData function deletes all the data previously stored in flash
memory by the Embedded Application.

Its prototype is :

s32 wm_osDeleteAllFlashData (void);

The return value is the total deleted flash objects data size (0 if there was no objects
to delete).

3.5.15 The wm_osDeleteRangeFlashData Function

The wm_osDeleteRangeFlashData function deletes all the flash objects between the
provided start & end IDs.

Its prototype is :

s32 wm_osDeleteRangeFlashData (u16 StartId, u16 EndId);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 57 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.5.15.1 Parameters

StartId:
Range to browse first Id

EndId:

Range to browse last Id

3.5.15.2 Return Values

The return value is the total deleted flash objects data size (0 if there was no objects
to delete), or ERROR if StartId is greater or equal than Enid.

3.5.16 The wm_osGetHeapMemory Function

The wm_osGetHeapMemory function gets memory from the Embedded Application
heap.

Its prototype is:

void * wm_osGetHeapMemory (u16 MemorySize);

3.5.16.1 Parameter

MemorySize:
Requested size.

3.5.16.2 Return Values

The return parameter is the memory address, or is NULL if an error has occurred.

3.5.17 The wm_osReleaseHeapMemory Function

The wm_osReleaseHeapMemory function releases a previously reserved memory
buffer.

Its prototype is:

s32 wm_osReleaseHeapMemory (void * ptrData);

3.5.17.1 Parameter

PtrData:
Points to the reserved memory.

3.5.17.2 Return Values

The return parameter is positive or null if the reserved memory has been
released, and negative if not.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 58 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.5.18 The wm_osGetRamInfo Function

The wm_osGetRamInfo function retrieves information about the Open AT RAM areas
sizes.

Its prototype is:

s32 wm_osGetRamInfo (wm_osRamInfo_t * Info);

3.5.18.1 Parameter

Info:
Open AT RAM information structure, using the following type:

typedef struct
{
 u32 TotalSize;
 u32 StackSize;
 u32 HeapSize;
 u32 GlobalSize;
} wm_osRamInfo_t;

o TotalSize

Total RAM size for the Open AT application (in bytes).

o StackSize
Open AT application call stack area size (in bytes).

o HeapSize
Open AT application total heap memory area size (in bytes).

o GlobalSize
Open AT application global variables area size (in bytes).

3.5.18.2 Return Values

OK on success.
ERROR on parameter error.

3.5.19 The wm_osSuspend function

The wm_osSuspend suspend the execution of the Open AT® embedded application.
its prototype is:

void wm_osSuspend(void)

Note: The resume of the application is set with AT+WOPENRES or with the
INTERRUPT feature when the PinInterrupt is set (see AT+WFM).

Open AT® application running in Remote Task Environment can not be suspended
(the function has no effect).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 59 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.5.20 The wm_osGetTask Function

The wm_osGetTask function returns the current task ID.

Its prototype is:

wm_osTask_e wm_osGetTask (void);

3.5.20.1 Return Values

The return parameter is the current embedded application task ID.

3.5.21 The wm_osSendMsg Function

The wm_osSendMsg function allows one embedded application task to send a user-
defined message to the other application tasks.

Its prototype is:

s8 wm_osSendMsg (wm_osTask_e Task,
 u8 MsgID,
 u16 MsgLength,
 u8 * MsgBody);

Notes:
o The sent message will be received by the destination task as a parameter of the

Parser() function.
o The received message ID will be (WM_USER_MSG_BASE + the msgID parameter).
o The received message body will be accessed through the UserMsg member of the

wm_apmBody_t union.

3.5.21.1 Parameters

Task
Destination task ID.

MsgID
User-defined message ID ; allowed values are from 0 to 0x7F.

MsgLength
Message body length.

MsgBody
Message body data pointer.

3.5.21.2 Return Values

The return parameter is the current embedded application task ID (Range of
values is [0 ;(WM_APM_MAX_TASK – 1)].

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 60 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.5.22 Example: Managing Data Flash Objects

5KB of Data Flash objects are available for Embedded Applications.
Data Flash objects are organized in Ids and managed by the Embedded Application.

An example related to Data Flash reading/writing is given below:

s32 LengthRead;
s32 Length;
u8* Ptr;
u16 Id;
s32 Writen;

FlashId = 112;

/* Get the len */
Length = wm_osGetLenFlashData (FlashId);
if (Length > 0)
{
 Ptr = wm_osGetHeapMemory (Length);

 /* Read the Flash Id item */
 LengthRead = wm_osReadFlashData (FlashId, Length, Ptr);

 Ptr[3] = 0x10; /* Change something */

 /* Write the modified Flash Id item */
 Writen = wm_osWriteFlashData (FlashId, Length, Ptr);
}

3.5.23 Example: RAM management

32 or 128 Kbytes (according to product type) of RAM are available for Embedded
Applications and the provided Wavecom library manages this RAM.

An example of the RAM request function is given below:

void *ptr;
ptr = wm_osGetHeapMemory (1000);/* 1000 bytes are requested */

An example of the RAM release function is given below:

wm_osReleaseHeapMemory (ptr);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 61 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.6 Flow Control Manager API

The Flow Control Manager API provides IO flows to the Embedded Application:
• Serial link based flows (UART 1, UART 2 physical outputs, or associated logical

27.010 protocol channels if any) ;
• Data Communication (through the GSM or GPRS network) ;
• Connected Bluetooth peripherals data access (Serial Port Profile only).

By default, these flows are closed to transmit all data directly between the V24 serial
links and GSM, GPRS or Bluetooth flows. The Embedded Application can use the
functions wm_fcmOpen() (see § 3.6.4) and wm_fcmClose() (see § 3.6.5) to open or close
these flows.

Important note
GPRS provides only packet mode transmission. This means that you can only send IP
packets to the GPRS flow.

3.6.1 Required Header

This API is defined in wm_fcm.h header file.
This file is included by wm_apm.h.

3.6.2 The wm_fcmFlow_e type

This type is the same as the wm_ioPort_e one. Please refer to the IO Port API for more
information about the available ports. Previous versions defined flow identifiers have
been kept for backward compatibility, but the new wm_ioPort_e ones should be used
instead.

#define WM_FCM_DATA WM_IO_GSM_BASE // GSM CSD FCM flow
#define WM_FCM_GPRS WM_IO_GPRS_BASE // GPRS FCM flow
#define WM_FCM_V24 WM_IO_UART1 // UART 1 FCM flow
#define WM_FCM_V24_UART1 WM_IO_UART1 // UART 1 FCM flow
#define WM_FCM_V24_UART2 WM_IO_UART2 // UART 2 FCM flow
#define WM_FCM_USB WM_IO_USB // USB flow (reserved)

3.6.3 The wm_fcmIsAvailable Function

This function allows to check if the required port is available and ready to handle the
FCM service.

Its prototype is:

bool wm_fcmIsAvailable (wm_fcmFlow_e FlowID);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 62 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.6.3.1 Parameters

Flow
The flow to be checked, using the wm_fcmFlow_e type.

3.6.3.2 Return value

• TRUE if the flow is ready for the FCM service.
• FALSE if it is not ready.

3.6.3.3 Notes

All ports should be available for the FCM service, except:

 The Open AT® virtual one, which is only usable for AT commands,
 The Bluetooth virtual ones with enabled profiles other than the SPP one,
 If the port is already used to handle a feature required by an external application

through the AT commands (+WLDB command, or a CSD/GPRS data session is
already running)

3.6.4 The wm_fcmOpen Function

The wm_fcmOpen function opens the requested flow between the Embedded
Application and a serial link port, a Data communication port, or a Bluetooth
peripheral.

Its prototype is:

s32 wm_fcmOpen (wm_fcmFlow_e FlowID,
 u16 DataMaxToReceive);

3.6.4.1 Parameters

Flow
The flow to be opened, using the wm_fcmFlow_e type.

DataMaxToReceive
Maximum block size to be sent to the Embedded Application from the
requested flow. This size depends on the required flow :

• maximum 120 bytes for a serial link based flow ;
• maximum 270 bytes for the GSM CSD data flow ;
• not used for the GPRS flow ;
• maximum 120 bytes for a Bluetooth based flow.

3.6.4.2 Return value

• WM_FCM_OK if successful.
• WM_FCM_ERR_NO_LINK if the requested flow can not be opened (the GSM
and GPRS flows can not be opened together).
• WM_FCM_KO if the required flow is unknown or not available

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 63 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.6.4.3 Notes

 The flow opening response is received by the Embedded Application through a
message. This message is available as a parameter of the Parser() function of the
task which has called the wm_fcmOpen function, with the MsgTyp parameter set to
WM_FCM_OPEN_FLOW.

 The DataMaxToSend parameter of the WM_FCM_OPEN_FLOW message informs
the Embedded Application of the maximum data block size it can send on this
flow. If this parameter is 0, there is no size limitation.

 The wm_fcmOpen() function on the GSM data flow must be called before using the
"ATD" command to set up a data call.

 The wm_fcmOpen() function on the GPRS flow must be called AFTER using the
wm_gprsOpen() function, followed by "ATD*99" or +CGACT or +CGDATA
commands to set up a GPRS session.

 After the end of a data call or GPRS session (on NO CARRIER unsolicited response,
or on ATH command), the wm_fcmClose() function must be called before setting up
a new data call / GPRS session.

3.6.5 The wm_fcmClose Function

The wm_fcmClose function closes the requested flow between the Embedded
Application and a serial link port, a Data communication port, or a Bluetooth port.

Its prototype is:

s32 wm_fcmClose (wm_fcmFlow_e FlowID);

3.6.5.1 Parameters

Flow
The flow to be closed, using the wm_fcmFlow_e type (see § 3.6.2 for
wm_fcmFlow_e description).

3.6.5.2 Return Value

 WM_FCM_OK if successful.
 WM_FCM_ERR_NO_LINK if the requested flow is not opened.
 WM_FCM_KO if the closing of data flow has failed.

3.6.5.3 Notes

 The flow closing response is received by the Embedded Application through a
message. This message is available as a parameter of the Parser() function of the
task which has used the wm_fcmOpen function, with MsgTyp parameter set to
WM_FCM_CLOSE_FLOW.

 The wm_fcmClose function must be called after any data call or GPRS session
release.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 64 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.6.6 The wm_fcmSubmitData Function

The wm_fcmSubmitData function submits a data block to the Flow Control Manager.

Its prototype is:
s32 wm_fcmSubmitData (wm_fcmFlow_e Flow,

wm_fcmSendBlock_t * fcmDataBlock);

3.6.6.1 Parameters

Flow
Specifies the IO flow where the data are sent; See § 3.6.2 for wm_fcmFlow_e
description.

fcmDataBlock:

Pointer on a wm_fcmSendBlock_t structure, allocated (see § 3.5.16: "The
wm_osGetHeapMemory ") and filled by the Embedded Application before
sending.
For example, to send 10 data bytes, the buffer must be allocated as follows :

fcmDataBlock = (wm_fcmSendBlock_t *) wm_osGetHeapMemory (sizeof (
wm_fcmSendBlock_t) + 10);

The definition of this structure is as follows:
typedef struct {
 u16 Reserved1[4];
 u32 Reserved3;
 u16 DataLength; /* number of byte of data to send */
 u16 Reserved2[5];
 u8 Data[1]; /* data buffer to send */
} wm_fcmSendBlock_t;

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 65 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.6.6.2 Returned Values

Returned Value Description
WM_FCM_OK the data block is sent, the memory allocated for

fcmDataBlock is released, and the Embedded
Application may go on sending more data blocks.

WM_FCM_EOK_NO_CREDIT the data block is sent and the memory allocated
for fcmDataBlock is released, but the Embedded
Application must wait for the
WM_FCM_RESUME_DATA_FLOW message
before sending more data blocks. This message
is available as a parameter of the
wm_apmAppliParser() function.

WM_FCM_ERR_NO_CREDIT the data block is not sent and the memory
allocated for fcmDataBlock is not released. The
Embedded Application must wait for the
WM_FCM_RESUME_DATA_FLOW message
before sending more data blocks. This message
is available as a parameter of the
wm_apmAppliParser() function.

WM_FCM_ERR_NO_LINK the flow is not opened. The data block is not sent
and the memory allocated for fcmDataBlock is
not released.

WM_FCM_ERR_UNKNOWN_FLOW the Embedded Application used an incorrect flow
ID. The data block is not sent and the memory
allocated for fcmDataBlock is not released.

WM_FCM_ERR_NO_LINK the requested flow is not opened or can’t be
opened (the GSM and GPRS flows can’t be
opened together).

3.6.6.3 Notes

 A successful data send by the wm_fcmSubmitData() function (with WM_FCM_OK
or WM_FCM_EOK_NO_CREDIT return code) will result in the reception of a
WM_OS_RELEASE_MEMORY message by the Embedded Application. This
message is available as a parameter of the wm_apmAppliParser() function with
the MsgTyp parameter set to WM_OS_RELEASE_MEMORY.

 You should not call the wm_fcmSubmitData() function more than once in the same
message treatment. The Embedded Application should set a timer between each
data block sending on the IO flows.

 Set a timer between the last data block sending on an IO flow, and this flow
closing operation. Also, a timer should be set between the last data block sending
on the V24 flow, and a call to the wm_ioSwitchSerialState
(WM_IO_SERIAL_AT_MODE) function.

 In remote task mode, as the serial link is strongly used (AT commands and
responses, traces and messages between the remote task and the target
software), a data send operation on the V24 flow with high speed rate will not
work. The Embedded Application should send data blocks on the V24 flow a very
low speed rate, in remote task mode.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 66 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.6.7 Receive Data Blocks

The Embedded Application may receive data blocks from an opened IO flow, through
the WM_FCM_RECEIVE_BLOCK message. This message is available as a parameter of
the wm_apmAppliParser() function.

3.6.7.1 Message Parameters

This is the WM_FCM_RECEIVE_BLOCK message structure:

typedef struct {
 u32 Reserved3;
 u16 DataLength; /* number of bytes received */
 u8 Reserved1[2];
 wm_fcmFlow_e FlowId; /* IO flow ID */
 u8 Reserved2[7];
 u8 Data[1]; /* received data buffer */
} wm_fcmReceiveBlock_t;

DataLength
Number of data bytes received in Data parameter from this flow. This size will
not exceed DataMaxToReceive parameter of the wm_fcmOpen() function (see §
3.6.4).

FlowID
Specifies the opened IO flow from where the data are received. See § 3.6.2 for
wm_fcmFlow_e description.

Data
Data block received from the IO flow. The memory allocated for Data
parameter will be released at the end of the Parser() function (see § 3.2.6).

3.6.7.2 Notes

 When the Embedded Application has treated one or more data blocks, it should
inform the Flow Control Manager to release credits, in order to receive more data,
by using the wm_fcmCreditToRelease() function (see § 3.6.8).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 67 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.6.8 The wm_fcmCreditToRelease Function

The wm_fcmCreditToRelease function informs the Flow Control Manager that the
Embedded Application has treated some data blocks, and is ready to receive more
data. This credit release system provides more security for the data transfer.

Its prototype is :

s32 wm_fcmCreditToRelease (wm_fcmFlow_e Flow,
u8 Credits);

3.6.8.1 Parameters

Flow:
Specifies the IO flow on which the Flow Control Manager may release credits.
See § 3.6.2 for wm_fcmFlow_e description.

Credits:
Specifies the number of credits the Embedded Application wants the Flow
Control Manager to release. This represents the number of data blocks
received and treated by the Embedded Application.
For example: when the Embedded Application has received and treated 3 data
blocks (i.e. 3 WM_FCM_RECEIVE_BLOCK messages), it should inform the Flow
Control Manager by calling wm_fcmCreditToRelease() function with the Credits
parameter set to 3.

3.6.8.2 Returned Values

The returned value is positive or zero if the credits are successfully released.
WM_FCM_ERR_NO_LINK if the requested flow is not opened or can not be opened
(the GSM and GPRS flows can not be opened together).

3.6.9 The wm_fcmQuery Function

The wm_fcmQuery function informs the Embedded Application of the FCM buffers
status.

Its prototype is :

s32 wm_fcmQuery (wm_fcmFlow_e Flow,
wm_fcmWay_e Way);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 68 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.6.9.1 Parameters

Flow:

Specifies the IO flow from which the buffer status is requested. See § 3.6.2 for
wm_fcmFlow_e description.

Way:

As flows have two way (from Embedded application, and to Embedded
application), this parameter specifies the way from which the buffer status is
requested. The possible values are:

typedef enum {
 WM_FCM_WAY_FROM_EMBEDDED,
 WM_FCM_WAY_TO_EMBEDDED
} wm_fcmWay_e;

3.6.9.2 Returned Values

The returned value is WM_FCM_BUFFER_EMPTY, the requested flow & way
buffer is empty.

The returned value is WM_FCM_BUFFER_NOT_EMPTY, the requested flow & way
buffer is not empty ; the Flow Control Manager is still processing data on this
flow.

A negative returned value means that an error occurred.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 69 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.7 Input Output API

This API manages Serial Link State and GPIO operations.

3.7.1 Required Header

This API is defined in wm_io.h header file.
This file is included by wm_apm.h.

3.7.2 AT/FCM Ports related functions

3.7.2.1 The wm_ioPort_e type

This type is used to identify the product IO ports, usable to send AT commands
and/or with the FCM service in order to exchange data with an external peripheral.
The type is detailed below.

typedef enum
{
 WM_IO_NO_PORT,
 WM_IO_UART1,
 WM_IO_UART2,
 WM_IO_USB,

 WM_IO_UART1_VIRTUAL_BASE = 0x10,
 WM_IO_UART2_VIRTUAL_BASE = 0x20,
 WM_IO_USB_VIRTUAL_BASE = 0x30,
 WM_IO_BLUETOOTH_VIRTUAL_BASE = 0x40,
 WM_IO_GSM_BASE = 0x50,
 WM_IO_GPRS_BASE = 0x60,
 WM_IO_OPEN_AT_VIRTUAL_BASE = 0x80
} wm_ioPort_e;

The available ports are described hereafter :

• WM_IO_NO_PORT
Not usable

• WM_IO_UART1
Product physical UART 1

• WM_IO_UART2
Product physical UART 2

• WM_IO_USB
Product physical USB port (reserved for future products)

• WM_IO_UART1_VIRTUAL_BASE
Base ID for 27.010 protocol logical channels on UART 1

• WM_IO_UART2_VIRTUAL _BASE
Base ID for 27.010 protocol logical channels on UART 2

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 70 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

• WM_IO_USB_VIRTUAL _BASE
Base ID for 27.010 protocol logical channels on USB link (reserved for future
products)

• WM_IO_BLUETOOTH_VIRTUAL_BASE
Base ID for connected Bluetooth peripheral virtual port.
ONLY USABLE WITH THE FCM SERVICE

• WM_IO_GSM_BASE
GSM CSD data flow identifier for FCM API
This flow is always considered as available (no update messages)
ONLY USABLE WITH THE FCM SERVICE

• WM_IO_GPRS_BASE
GPRS data flow identifier for FCM API
This flow is always considered as available if the GPRS feature is enabled, or
unavailable if this feature is disabled (no update messages)
ONLY USABLE WITH THE FCM SERVICE

• WM_IO_OPEN_AT_VIRTUAL_BASE
Base ID for AT commands contexts dedicated to Open AT® applications
ONLY USABLE WITH AT COMMANDS

3.7.2.2 The wm_ioSerialSwitchState Function

The wm_ioSerialSwitchState function sets the serial link mode:
• AT command computing, or
• direct data transmission through the V24 Serial Link Flow.

Its prototype is:

void wm_ioSerialSwitchState
(wm_ioPort_e Port
 wm_ioSerialSwitchState_e SerialState);

3.7.2.2.1 Parameters

Port
Specifies the IO port to switch the state, using the wm_ioPort_e type.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 71 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

SerialState

Specifies the requested state of the Serial Link. The possible values are
defined below:

typedef enum {
 WM_IO_SERIAL_AT_MODE,
 WM_IO_SERIAL_DATA_MODE,
 WM_IO_SERIAL_ATO,
 WM_IO_SERIAL_AT_OFFLINE // Incoming message only
} wm_ioSerialSwitchState_e;

WM_IO_SERIAL_AT_MODE represents the AT commands computing mode. In
this mode, data received from V24 serial link is parsed and treated like AT
commands.

WM_IO_SERIAL_DATA_MODE represents the direct data transmission mode.
In this mode, data received from V24 serial link is transmitted without
treatment through the V24 Serial Link Flow.

WM_IO_SERIAL_ATO is used only if the External Application sent a "+++"
string, in order to switch the V24 interface in "ONLINE" mode (see next
paragraph "Notes")

WM_IO_SERIAL_AT_OFFLINE is only received in the
WM_IO_SERIAL_SWITCH_STATE_RSP message, when the external application
used the "+++" sequence to switch back the serial link in AT mode.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 72 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.7.2.2.2 Notes

 The serial mode switching response is received by the Embedded Application
through a message. This message is available as a parameter of the Parser()
function with the MsgTyp parameter set to WM_IO_SERIAL_SWITCH_STATE_RSP
(see § 3.2.6). The SerialMode parameter of this message is the requested Serial
Link Mode; if the RequestReturn parameter is negative, an error occurred, and the
Serial Link Mode does not change.

 The wm_ioSerialSwitchState() function is not allowed if the V24 Serial Link and
the Data Flows are not opened by the Embedded Application (see § 3.7.2.2). In
this case, the WM_IO_SERIAL_SWITCH_STATE_RSP message will always return a
negative RequestReturn parameter.

 In Figure 2 (see § 3.6), the wm_ioSerialSwitchState() function controls Switch 1.

VERY IMPORTANT NOTES

 Sending the "+++" sequence from an External Application while the serial link is in
WM_IO_SERIAL_DATA_MODE state will switch it to WM_IO_SERIAL_AT_MODE
state after the OK response, during or out of a data call. The "+++" sequence must
be preceded and followed by a period of one second without character sending, in
order to allow the serial link to switch to WM_IO_SERIAL_AT_MODE state.
In this case, the Open AT® application will receive a
WM_IO_SERIAL_SWITCH_STATE_RSP message with the SerialMode field set to
the WM_IO_SERIAL_AT_OFFLINE state.

3.7.2.3 The wm_ioSerialGetSignal Function

The wm_ioSerialGetSignal function allows to get the current values of the CTS and
DSR signals of the required port.

Its prototype is :

s32 wm_ioSerialGetSignal (wm_ioPort_e Port,
wm_ioSerialGetSignal_e SerialSignal)

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 73 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.7.2.3.1 Parameters

Port:
Required port from which to query the signal state, based on the wm_ioPort_e
type. Only physical output related ports (UARTX & USB ones, used as physical
ports, or with the 27.010 protocol) may be used with this function.

SerialSignal:
Value designating the signal to get, using following type:

typedef enum
{
 WM_IO_SERIAL_CTS,
 WM_IO_SERIAL_DSR
} wm_ioSerialGetSignal_e;

3.7.2.3.2 Returned Values

1: The signal is on (active)
0: The signal is off

3.7.2.4 The wm_ioIsPortAvailable Function

The wm_ioIsPortAvailable function allows to query the required port state (opened or
closed).

Its prototype is :

bool wm_ioIsPortAvailable (wm_ioPort_e Port)

3.7.2.4.1 Parameters

Port:
Port from which to query the state.

3.7.2.4.2 Returned Values

TRUE if the port is currently opened,
FALSE otherwise.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 74 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.7.3 GPIO API

3.7.3.1 GPIO Types

3.7.3.1.1 The wm_ioConfig_t structure

This structure is used by the wm_ioAllocate function in order to set the reserved GPIO
parameters.

typedef struct
{
 wm_ioLabel_u eLabel;
 u32 Pad;
 wm_ioDirection_e eDirection;
 wm_ioState_e eState;

} wm_ioConfig_t;

The eLabel member represents the GPIO label. The eDirection member represents the
GPIO direction. The eState member represents the GPIO state.

3.7.3.1.2 The wm_ioLabel_u union

This union represents the different GPIO labels, depending on the used product.

typedef union
{
 wm_ioLabel_Q24X0_e Q24X0_Label;
 wm_ioLabel_Q24X3_e Q24X3_Label;
 wm_ioLabel_Q24X6_e Q24X6_Label;
 wm_ioLabel_P32X3_e P32X3_Label;
 wm_ioLabel_P32X6_e P32X6_Label;
 wm_ioLabel_Q31X6_e Q31X6_Label;
 wm_ioLabel_P51X6_e P51X6_Label;
 wm_ioLabel_Q25X1_e Q25X1_Label;
 wm_ioLabel_Q24CLASSIC_e Q24CLASSIC_Label;
 wm_ioLabel_Q24PLUS_e Q24PLUS_Label;
 wm_ioLabel_Q24AUTO_e Q24AUTO_Label;
 wm_ioLabel_Q24EXTENDED_e Q24EXTENDED_Label;
} wm_ioLabel_u;

The Q24X0_Label member must be used on Wismo Quik Q24x0 products.
The Q24X3_Label member must be used on Wismo Quik Q24x3 products.
The Q24X6_Label member must be used on Wismo Quik Q24X6 products.
The P32X3_Label member must be used on Wismo Pac P3xx3 based products.
The P32X6_Label member must be used on Wismo Pac P32X6 based products.
The Q31X6_Label member must be used on Wismo Quik P31X6 products.
The P51X6_Label member must be used on Wismo Pac P5186 products.
The Q24X1_Label member must be used on Wismo Quik Q25X1 products.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 75 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

WISMO QUIK Q24X0 GPIO LABELS

The Gpio labels for Wismo Quik Q24X0 products are defined by the values below:
typedef enum
{
 WM_IO_Q24X0_GPI = 0x00000001, // GPI ID
 WM_IO_Q24X0_GPO_0 = 0x00000002, // GPO IDs
 WM_IO_Q24X0_GPO_1 = 0x00000004,
 WM_IO_Q24X0_GPO_2 = 0x00000008,
 WM_IO_Q24X0_GPO_3 = 0x00000010,
 WM_IO_Q24X0_GPIO_0 = 0x00000020, // GPIO IDs
 WM_IO_Q24X0_GPIO_4 = 0x00000200,
 WM_IO_Q24X0_GPIO_5 = 0x00000400
} wm_ioLabel_Q24X0_e;

WISMO QUIK Q2XX3 GPIO LABELS

The Gpio labels for Wismo Quik Q2XX3 products are defined by the values below:
typedef enum
{
 WM_IO_Q24X3_GPI = 0x00000001, // GPI ID
 WM_IO_Q24X3_GPO_1 = 0x00000004, // GPO IDs
 WM_IO_Q24X3_GPO_2 = 0x00000008,
 WM_IO_Q24X3_GPIO_0 = 0x00000010, // GPIO IDs
 WM_IO_Q24X3_GPIO_4 = 0x00000100,
 WM_IO_Q24X3_GPIO_5 = 0x00000200
} wm_ioLabel_Q24X3_e;

WISMO QUIK Q24X6 GPIO LABELS

The Gpio labels for Wismo Quik Q2406 products are defined by the values below:
typedef enum
{
 WM_IO_Q24X6_GPI = 0x00000001, // GPI ID
 WM_IO_Q24X6_GPO_0 = 0x00000002, // GPO IDs
 WM_IO_Q24X6_GPO_1 = 0x00000004,
 WM_IO_Q24X6_GPO_2 = 0x00000008,
 WM_IO_Q24X6_GPO_3 = 0x00000010,
 WM_IO_Q24X6_GPIO_0 = 0x00000020, // GPIO IDs
 WM_IO_Q24X6_GPIO_4 = 0x00000200,
 WM_IO_Q24X6_GPIO_5 = 0x00000400
} wm_ioLabel_Q24X6_e;

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 76 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

WISMO PAC P3XX3 GPIO LABELS

The Gpio labels for Wismo Pac P3XX3 products are defined by the values below:
typedef enum
{
 WM_IO_P32X3_GPI = 0x00000001, // GPI ID
 WM_IO_P32X3_GPIO_0 = 0x00000008, // GPIO IDs
 WM_IO_P32X3_GPIO_2 = 0x00000020,
 WM_IO_P32X3_GPIO_3 = 0x00000040,
 WM_IO_P32X3_GPIO_4 = 0x00000080,
 WM_IO_P32X3_GPIO_5 = 0x00000100
} wm_ioLabel_P32X3_e;

WISMO PAC P32X6 GPIO LABELS

The Gpio labels for Wismo Pac P32X6 products are defined by the values below:
typedef enum
{
 WM_IO_P32X6_GPI = 0x00000001, // GPI ID
 WM_IO_P32X6_GPO_0 = 0x00000002, // GPO ID
 WM_IO_P32X6_GPIO_0 = 0x00000008, // GPIO IDs
 WM_IO_P32X6_GPIO_2 = 0x00000020,
 WM_IO_P32X6_GPIO_3 = 0x00000040,
 WM_IO_P32X6_GPIO_4 = 0x00000080,
 WM_IO_P32X6_GPIO_5 = 0x00000100,
 WM_IO_P32X6_GPIO_8 = 0x00000800
} wm_ioLabel_P32X6_e;

WISMO QUIK Q31X6 GPIO LABELS

The Gpio labels for Wismo Quik Q31X6 products are defined by the values below:
typedef enum
{
 WM_IO_Q31X6_GPI = 0x00000001, // GPI ID
 WM_IO_Q31X6_GPO_1 = 0x00000004, // GPO IDs
 WM_IO_Q31X6_GPO_2 = 0x00000008,
 WM_IO_Q31X6_GPIO_3 = 0x00000080, // GPIO IDs
 WM_IO_Q31X6_GPIO_4 = 0x00000100,
 WM_IO_Q31X6_GPIO_5 = 0x00000200,
 WM_IO_Q31X6_GPIO_6 = 0x00000400,
 WM_IO_Q31X6_GPIO_7 = 0x00000800
} wm_ioLabel_Q31X6_e;

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 77 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

WISMO PAC P5186 GPIO LABELS

The Gpio labels for Wismo Pac P5186 products are defined by the values below:
typedef enum
{
 WM_IO_P5186_GPO_0 = 0x00000001, // GPO ID
 WM_IO_P5186_GPO_1 = 0x00000002,
 WM_IO_P5186_GPIO_0 = 0x00000020, // GPIO IDs
 WM_IO_P5186_GPIO_4 = 0x00000200,
 WM_IO_P5186_GPIO_5 = 0x00000400,
 WM_IO_P5186_GPIO_8 = 0x00002000,
 WM_IO_P5186_GPIO_9 = 0x00004000,
 WM_IO_P5186_GPIO_10 = 0x00008000,
 WM_IO_P5186_GPIO_11 = 0x00010000,
 WM_IO_P5186_GPIO_12 = 0x00020000
} wm_ioLabel_P5186_e;

WISMO QUIK Q25X1 GPIO LABELS

The Gpio labels for Wismo Quik Q25X1 products are defined by the values below:
typedef enum
{

WM_IO_Q25X1_GPI = 0x00000001,
WM_IO_Q25X1_GPO_0 = 0x00000002,
WM_IO_Q25X1_GPO_1 = 0x00000004,
WM_IO_Q25X1_GPO_2 = 0x00000008,
WM_IO_Q25X1_GPO_3 = 0x00000010,
WM_IO_Q25X1_GPIO_0 = 0x00000020,
WM_IO_Q25X1_GPIO_1 = 0x00000040,
WM_IO_Q25X1_GPIO_2 = 0x00000080,
WM_IO_Q25X1_GPIO_3 = 0x00000100,
WM_IO_Q25X1_GPIO_4 = 0x00000200,
WM_IO_Q25X1_GPIO_5 = 0x00000400,
WM_IO_Q25X1_PAD = 0x7FFFFFFF

} wm_ioLabel_Q25X1_e;

WIRELESS CPU Q24 CLASSIC GPIO LABELS

The Gpio labels for Wireless CPU Q24 Classic products are defined by the values
below:

typedef enum
{
 WM_IO_Q24CLASSIC_GPI = 0x00000001, // GPI ID
 WM_IO_Q24CLASSIC_GPO_0 = 0x00000002, // GPO IDs
 WM_IO_Q24CLASSIC_GPO_1 = 0x00000004,
 WM_IO_Q24CLASSIC_GPO_2 = 0x00000008,
 WM_IO_Q24CLASSIC_GPO_3 = 0x00000010,
 WM_IO_Q24CLASSIC_GPIO_0 = 0x00000020, // GPIO IDs
 WM_IO_Q24CLASSIC_GPIO_4 = 0x00000200,
 WM_IO_Q24CLASSIC_GPIO_5 = 0x00000400
} wm_ioLabel_Q24CLASSIC_e;

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 78 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

WIRELESS CPU Q24 PLUS GPIO LABELS

The Gpio labels for Wireless CPU Q24 Plus products are defined by the values below:
typedef enum
{
 WM_IO_Q24PLUS_GPI = 0x00000001, // GPI ID
 WM_IO_Q24PLUS_GPO_0 = 0x00000002, // GPO IDs
 WM_IO_Q24PLUS_GPO_1 = 0x00000004,
 WM_IO_Q24PLUS_GPO_2 = 0x00000008,
 WM_IO_Q24PLUS_GPO_3 = 0x00000010,
 WM_IO_Q24PLUS_GPIO_0 = 0x00000020, // GPIO IDs
 WM_IO_Q24PLUS_GPIO_4 = 0x00000200,
 WM_IO_Q24PLUS_GPIO_5 = 0x00000400
} wm_ioLabel_Q24PLUS_e;

WIRELESS CPU Q24 AUTO Gpio Labels
The Gpio labels for Wireless CPU Q24 Auto products are defined by the values
below:

typedef enum
{
 WM_IO_Q24AUTO_GPI = 0x00000001, // GPI ID
 WM_IO_Q24AUTO_GPO_0 = 0x00000002, // GPO IDs
 WM_IO_Q24AUTO_GPO_1 = 0x00000004,
 WM_IO_Q24AUTO_GPO_2 = 0x00000008,
 WM_IO_Q24AUTO_GPO_3 = 0x00000010,
 WM_IO_Q24AUTO_GPIO_0 = 0x00000020, // GPIO IDs
 WM_IO_Q24AUTO_GPIO_4 = 0x00000200,
 WM_IO_Q24AUTO_GPIO_5 = 0x00000400
} wm_ioLabel_Q24AUTO_e;

WIRELESS CPU Q24 EXTENDED GPIO LABELS

The Gpio labels for Wireless CPU Q24 Extended products are defined by the values
below:

typedef enum
{
 WM_IO_Q24EXTENDED_GPI = 0x00000001, // GPI ID
 WM_IO_Q24EXTENDED_GPO_0 = 0x00000002, // GPO IDs
 WM_IO_Q24EXTENDED_GPO_1 = 0x00000004,
 WM_IO_Q24EXTENDED_GPO_2 = 0x00000008,
 WM_IO_Q24EXTENDED_GPO_3 = 0x00000010,
 WM_IO_Q24EXTENDED_GPIO_0 = 0x00000020, // GPIO IDs
 WM_IO_Q24EXTENDED_GPIO_4 = 0x00000200,
 WM_IO_Q24EXTENDED_GPIO_5 = 0x00000400
} wm_ioLabel_Q24EXTENDED_e;

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 79 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.7.3.1.3 The wm_ioDirection_e type

This type represents the direction used for a GPIO.

typedef enum
{
 WM_IO_OUTPUT,
 WM_IO_INPUT,
 WM_IO_NORMAL
} wm_ioDirection_e;

The WM_IO_OUTPUT constant is used to set a GPIO as an output.The WM_IO_INPUT
constant is used to set a GPIO as an input.

A GPI must always be allocated with the WM_IO_INPUT direction.
A GPO must always be allocated with the WM_IO_NORMAL direction.

3.7.3.1.4 The wm_ioState_e type

This type represents the state of a GPIO.

typedef enum
{
 WM_IO_LOW,
 WM_IO_HIGH
} wm_ioState_e;

The WM_IO_LOW constant represents the low state of a GPIO. The WM_IO_HIGH
constant represents the high state of a GPIO.

3.7.3.1.5 The wm_ioSetDirection_t structure

This type is used by the wm_ioSetDirection function to set a GPIO to a new direction.

typedef struct
{
 wm_ioLabel_u eLabel;
 wm_ioDirection_e eDirection;
} wm_ioSetDirection_t;

The eLabel member represents the GPIO label. The eDirection member represents the
new GPIO direction.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 80 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.7.3.1.6 Return values definition

Return value Definition

WM_IO_PROC_DONE The function processing is done successfully.

WM_IO_UNKNOWN_TYPE A direction parameter has an incorrect value.

WM_IO_INPUT_CANT_BE_SET The function failed to set an Input pin.

WM_IO_OUTPUT_CANT_BE_READ The function failed to read an Output pin.

WM_IO_NO_MORE_HANDLES_LEFT No more free handle to allocate the requested
GPIOs.

WM_IO_EXCEED_MAX_NUMBER A parameter exceeded the allowed range value.

WM_IO_UNALLOCATED_HANDLE A handle parameter has an incorrect value.

WM_IO_INCOHERENCE_BETWEEN_HA
NDLE_AND_MASK

The function tried to use a GPIO mask with an
incorrect handle.

WM_IO_INCOHERENCE_BETWEEN_DIR
ECTION_AND_MASK

The function tried to set an input pin direction to
output, or an output pin direction to input.

WM_IO_IO_ALREADY_USED The function tried to allocate a GPIO already
allocated on another handle.

WM_IO_INCOHERENCE_BETWEEN_HA
NDLE_AND_IO_NUMBER

The function tried to use a GPIO value with an
incorrect handle.

3.7.3.2 The wm_ioAllocate Function

The wm_ioAllocate function reserves one or more GPIO(s) for the Embedded
Application use.

Its prototype is:

s32 wm_ioAllocate (u32 NbGpioToAllocate,
 wm_ioConfig_t * GpioCustomerConfig);

3.7.3.2.1 Parameters

NbGpioToAllocate:
Size of the GpioCustomerConfig array.

GpioCustomerConfig:
Array of values, defined by the wm_ioConfig_t structure (see §3.6.2.1.1).

For each member of this array:

• eLabel represents the label of the requested GPIO, GPI or GPO,
depending on the product used.

• eDirection represents the direction used for this GPIO.
• eState represents the state of the requested GPIO.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 81 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.7.3.2.2 Returned Values

If the GPIO allocation operation is successful, the returned value is a positive
or null handle, which must be used in all further operations on the reserved
GPIO. Otherwise, a negative returned value represents an error (cf §3.7.3.1.6).

3.7.3.2.3 Notes

 The eDirection member of the wm_ioConfig_t structure is only significant for GPIO
pins. GPI pins should be always set as an input and GPO pins should be always
set as an output. Otherwise, the eDirection parameter is not taken into account.

 The eState member of the wm_ioConfig_t structure is only significant for pins set
as an output by the eDirection parameter. Otherwise, the eState parameter is not
taken into account.

 After a successful allocation, GPIO allocated by the Embedded Application are no
more available for AT commands (AT+WIOR, AT+WIOW, AT+WIOM).

3.7.3.3 The wm_ioRelease Function

The wm_ioRelease function allows to release one or more GPIO reserved by the
wm_ioAllocate function.
Its prototype is:

s32 wm_ioRelease (s32 Handle,
 u32 NbGpioToRelease,
 wm_ioLabel_u * GpioCustomerLabel);

3.7.3.3.1 Parameters

Handle:
Handle returned by the wm_ioAllocate function. All GPIOs of
GpioCustomerLabel parameter must be related to this Handle.

NbGpioToRelease:

Size of the GpioCustomerLabel array.

GpioCustomerLabel:

Array of values, defined by the wm_ioLabel_u union (see §3.7.3.1.2).

Each member of this array represents the label of one GPIO to release.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 82 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.7.3.3.2 Returned Values

OK: successful completion
Otherwise, a negative returned value represents an error (cf §3.7.3.1.6).

3.7.3.3.3 Notes

 If one of the given GPIO labels is not related to the given Handle, the wm_ioRelease
function will fail.

 After a successful release, GPIO released control is resumed by AT commands
(AT+WIOR, AT+WIOW, AT+WIOM).

3.7.3.4 The wm_ioSetDirection Function

The wm_ioSetDirection function allows to change the direction of an allocated GPIO.

Its prototype is:

s32 wm_ioSetDirection (s32 Handle,
 u32 NbGpioToChangeDir,
 wm_ioSetDirection_t * GpioDirection);

3.7.3.4.1 Parameters

Handle:
Handle returned by the wm_ioAllocate function. All GPIOs of GpioDirection
parameter must be related to this Handle.

NbGpioToChangeDir:

Size of the GpioDirection array.

GpioDirection:

Array of values, defined by the wm_ioSetDirection_t structure (see §
3.7.3.1.5).

For each member of this array :

• eLabel represents the label of the GPIO, GPI or GPO to change direction,
depending on the used product.

• eDirection represents the new direction to use for this GPIO.

3.7.3.4.2 Returned Values

OK: successful completion
Otherwise, a negative returned value represents an error (cf §3.7.3.1.6).

3.7.3.4.3 Notes

 If one of the given GPIO labels is not related to the given Handle, the
wm_ioSetDirection function will fail.

 This function is only useful for GPIO pins. GPI or GPO pins direction should not be
changed.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 83 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.7.3.5 The wm_ioRead Function

The wm_ioRead function allows to read the current state of one or more allocated
GPIO(s).

Its prototype is :

s32 wm_ioRead (s32 Handle,
 u32 Gpio,
 u32 * GpioState);

3.7.3.5.1 Parameters

Handle:
Handle returned by the wm_ioAllocate function. All GPIOs of "Gpio" parameter
must be related to this Handle.

Gpio:

Mask designating the GPIO(s) to read. This mask is obtained by performing a
logical OR with members of the wm_ioLabel_u union.

GpioState:

Mask used to return the read states. Each bit of this mask represents the state
of the corresponding GPIO in the "Gpio" parameter.

3.7.3.5.2 Returned Values

OK: successful completion
Otherwise, a negative returned value represents an error (cf §3.7.3.1.6).

3.7.3.5.3 Notes

 If one of the given GPIO labels is not related to the given Handle, the wm_ioRead
function will fail.

3.7.3.6 The wm_ioSingleRead Function

The wm_ioSingleRead function allows to read the current state of one single allocated
GPIO.

Its prototype is:

s32 wm_ioSingleRead (s32 Handle,
 u32 Gpio);

3.7.3.6.1 Parameters

Handle:
Handle returned by the wm_ioAllocate function. The "Gpio" parameter must be
related to this Handle.

Gpio:
Value designating the GPIO to read, member of the wm_ioLabel_u union.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 84 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.7.3.6.2 Returned Values

If the read operation is successful, the function returns the GPIO state, as
defined in wm_ioState_e type.
Otherwise, a negative returned value represents an error (cf § 3.7.3.1.6:
"Return values definition").

3.7.3.6.3 Notes

 If the given GPIO label is not related to the given Handle, the wm_ioSingleRead
function will fail.

3.7.3.7 The wm_ioWrite Function

The wm_ioWrite function allows to define a new state for one or more allocated
GPIO(s).

Its prototype is:

s32 wm_ioWrite (s32 Handle,
 u32 Gpio,
 u32 GpioState);

3.7.3.7.1 Parameters

Handle:
Handle returned by the wm_ioAllocate function. All GPIOs of "Gpio" parameter
must be related to this Handle.

Gpio:

Mask designating the GPIO(s) to write. This mask is obtained by performing a
logical OR with members of the wm_ioLabel_u union.

GpioState:

Mask used to indicate the different states to write. Each bit of this mask
represents the state of the corresponding GPIO in the "Gpio" parameter.

3.7.3.7.2 Returned Values

OK: successful completion
Otherwise, a negative returned value represents an error (cf § 3.7.3.1.6:
"Return values definition").

3.7.3.7.3 Notes

 If one of the given GPIO labels is not related to the given Handle, the wm_ioWrite
function will fail.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 85 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.7.3.8 The wm_ioSingleWrite Function

The wm_ioSingleWrite function allows to define a new state for one single allocated
GPIO.

Its prototype is:

s32 wm_ioSingleWrite (s32 Handle,
 u32 Gpio
 u32 State);

3.7.3.8.1 Parameters

Handle:
Handle returned by the wm_ioAllocate function. The "Gpio" parameter must be
related to this Handle.

Gpio:

Value designating the GPIO to write, member of the wm_ioLabel_u union.

State:
Value designating the State to write (as defined by the wm_ioState_e type).

3.7.3.8.2 Returned Values

OK: successful completion
Otherwise, a negative returned value represents an error (cf § 3.7.3.1.6:
"Return values definition").

3.7.3.8.3 Notes

 If the given GPIO label is not related to the given Handle, the wm_ioSingleWrite
function will fail.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 86 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.8 GPRS API

A set of AT commands to manage the GPRS is provided.
These commands are described in the AT Command Interface Guide.

3.8.1 GPRS Overview

3.8.1.1 Introduction

The General Packet Radio Service (GPRS) is a set of GSM services that provides
packet mode transmission within the Public Land Mobile Network (PLMN) and
interworks with external networks. GPRS allows the subscriber to send and receive
data in an end-to-end packet transfer mode, without using network resources in
circuit-switched mode. GPRS enables the cost-effective and efficient use of network
resources for packet data applications as :

- application with intermittent, non periodic data transmission
- frequent transmissions of small volumes of data
- infrequent transmissions of larger volumes of data

Based on standardized network protocols supported by the GPRS bearer services, a
GPRS network operator may offer a set of additional services including :

- Retrieval services that provide the capability of accessing information stored
in database centers. The information is sent to the user on demand only.
Web is a good example of such services.

- Messaging services which offer communication between individual users via
storage units with store and forward mailbox as e-mail client.

- Conversational services which provide bi-directional communication by
means of real time end-to-end information transfer such as telnet application
(download of melodies, games and more).

- Tele-action services which are characterized by low data volume
transactions, such as credit card validation, bank account transaction, stock
trading, electronic monitoring, utility meter reading and surveillance system.

GPRS permit to optimize the cost (the user is billed for the volume of data transferred
and not for the connection duration) and a best interworking with external packet
network.

Wavecom Mobile Equipment is GPRS class B compliant.

3.8.1.2 Definition of a PDP context

Before transferring any data packet between the mobile and the network, a PDP
context (Packet Data Protocol) must be defined and activated by the mobile. These
activation and deactivation procedures over the GPRS network are considered as
signaling phases.

A PDP context is a structure which identifies a PDP (IP or X25 type, but Wavecom
uses only IP context) which is like a virtual channel between the mobile and the

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 87 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

GGSN (the GPRS Gateway which provide access to an external network). We
communally call "GPRS session" an activated PDP.

Note that a PDP context is a logical channel which does not cost anything on idle
(unlike GSM data call). It allows permanent data connection.

A PDP context is associated with a specific Quality Of Service.

A set of AT commands are available in order to activate, accept, deactivate and abort
PDP contexts.

The PDP context activation may be initiated by the mobile or may be requested by the
Network.

The mobile user can define more than one PDP contexts (up to 4 simultaneous) but
can activate only one at a time.

The parameters which define a PDP context are:

- Cid is the identifier of the define PDP context (ie 1 to 4)
- PDP Type organization : IETF (IP type)
- PDP Address Information : Mobile address (static or dynamic) that identifies

the ME in the address space applicable to the PDP
- QOS Profile requested : QOS requested by the user (mobile equipment)
- QOS Profile Minimum : QOS minimum accepted by the ME
- DCOMP : Data compression or not
- HCOMP : header compression or not
- Access Point Name: Access Point Name of the External Network which is a

logical name that is used to select the GGSN or the external packet data
network (ex web.sfr.fr). Provided by the GPRS operator.

Please refer to the definitions of GPRS AT commands for more information.

IMPORTANT NOTE:
The wm_fcmOpenGPRSAndV24() function must be called AFTER using the wm_gprsOpen()
function followed by "ATD*99" or +CGACT or +CGDATA commands to set up a GPRS
session.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 88 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.8.2 The wm_gprsAuthentification function

This command sets the authentication parameters login/password to use with a
particular Cid during a PDP activation.

Its prototype is:

s32 wm_gprsAuthentification(u8 Cid, ascii *login, ascii *password)

3.8.2.1 Parameters

Cid:
(PDP Context Identifier) a numeric parameter (1-4) which specifies a particular
PDP context definition (see AT Commands Interface Guide).

Login and Password:

The login and the password authentication parameters in ASCII character
(terminated by a 0x00 character) used to authenticate the user during a PDP
activation. The maximum length of each authentication string is limited to 50
characters (including the terminal 0x00 character). The string is truncated if its
length is more than 25 characters.

Note:

• These parameters must be set before each PDP activation.
• They are optional and depend of your subscription setup.

3.8.2.2 Required Header

Wm_gprs.h

3.8.2.3 Return value

0 if successful
WM_GPRS_CID_NOT_DEFINED If the Cid is not defined
WM_NO_GPRS_SERVICE if the GPRS service is not supported

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 89 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.8.3 The wm_gprsIPCPInformations function

This command gets the current IPCP information to use with a particular Cid after a
PDP activation.
These parameters are not saved in memory, and are only available during the life of
the PDP context.

Its prototype is :

s32 wm_gprsIPCPInformations (
u8 Cid,
u32* DNS1,
u32* DNS2,
u32* Gateway)

3.8.3.1 Parameters

Cid:
(PDP Context Identifier) a numeric parameter (1-4) which specifies a particular
PDP context definition (see AT Commands Interface Guide).

DNS1 and DNS2 and Gateway:

Return values in native u32 format which are IPV4 addresses provided by the
network. If the network doesn’t provide them, the values are equal to 0.

Note:
These parameters are optional and depend of the operator setup.

3.8.3.2 Required Header

Wm_gprs.h

3.8.3.3 Return value

0 if successful
WM_GPRS_CID_NOT_DEFINED If the Cid is not defined
WM_NO_GPRS_SERVICE if the GPRS service is not supported

3.8.4 The wm_gprsOpen function

This command sets Open AT® as the user of the GPRS bearer associated with the
parameter Cid.

Its prototype is:

s32 wm_gprsOpen(u8 Cid)

Note:
This interface must be used before each PDP activation and before opening the FCM
flows.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 90 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.8.4.1 Parameters

Cid:
(PDP Context Identifier) a numeric parameter (1-4) which specifies a particular
PDP context definition (see AT Commands Interface Guide).

3.8.4.2 Required Header

Wm_gprs.h

3.8.4.3 Return value

0 if successful
WM_GPRS_CID_NOT_DEFINED If the Cid is not defined
WM_NO_GPRS_SERVICE if the GPRS service is not supported

3.8.5 The wm_gprsClose function

This command unsets Open AT® as the user of the GPRS bearer associated with the
parameter Cid.

Its prototype is:

s32 wm_gprsClose(u8 Cid)

Note:
This interface must be used after closing the PDP context and closing the FCM flows.

3.8.5.1 Parameters

Cid:
(PDP Context Identifier) a numeric parameter (1-4) which specifies a particular
PDP context definition (see AT Commands Interface Guide).

3.8.5.2 Required Header

Wm_gprs.h

3.8.5.3 Return value

0 if successful
WM_GPRS_CID_NOT_DEFINED If the cid is not defined
WM_NO_GPRS_SERVICE if the GPRS is not supported

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 91 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.9 BUS API

This API manages the I2C Soft, I2c Hard, SPI and parallel bus operations.
Note: for bus management operations, the Q25x1 series module behaves as Q2406
modules.

3.9.1 Required Header

This API is defined in wm_bus.h header file.
This file is included by wm_apm.h.

3.9.2 Returned values definition

Returned Value Description

WM_BUS_PROC_DONE (0) The function processing is successfully done.

WM_BUS_MODE_UNKNOWN_TYPE (-1) Unknown open mode type

WM_BUS_UNKNOWN_TYPE (-11) Unknown bus type

WM_BUS_BAD_PARAMETER (-12) A parameter has an illegal value.

WM_BUS_SPI1_ALREADY_USED (-13) The SPI bus is already open.

WM_BUS_I2C_HARD_ALREADY_USED (-14) The I2C hard bus is already open.

WM_BUS_I2C_SOFT_ALREADY_USED (-15) The I2C soft bus is already open.

WM_BUS_UNKNOWN_HANDLE (-21) The handle used has an incorrect value.

WM_BUS_HANDLE_NOT_OPENED (-22) No existing handle for this bus.

WM_BUS_NO_MORE_HANDLE_FREE (-23) No more available handle for this bus.

WM_BUS_NOT_CONNECTED_ON_I2C (-31) No peripheral connected on I2C soft bus.

WM_BUS_NOT_ALLOWED_ADDRESS (-32) Unknown address

WM_BUS_I2C_SOFT_GPIO_NOT_GPIO (-33) The function tried to Open I2C Soft bus with
a GPI or a GPO (not an adequate GPIO).

WM_BUS_SPI_AUX_NOT_FREE (-35) The SPI bus has already been opened with
the SPI_AUX pin selected.

WM_BUS_SPI_GPIO_CS_NOT_GPIO (-36) The considered chip select pin is not a GPIO
or a GPO.

WM_BUS_SPI_CS_HARD_NOT_COHERENT (-42) The considered chip select is not available.

WM_BUS_SPI_SDAT_SCLK_MUX_PB (-45) Multiplexed signals with SDAT and SCLK are
already used.

WM_BUS_I2C_HARD_SDA_SCL_MUX_PB (-46) Multiplexed signals with SDA and SCL are
already used.

WM_BUS_SPI_EECS1_NOT_FREE (-48) The chip select EECS1 is not free.

WM_BUS_BAD_DATA_SIZE (-61) Bad data size.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 92 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.9.3 The wm_busOpen Function

The wm_busOpen function allows to allocate a Handle on the required bus, and to
open it for further read/write operations.

Its prototype is :

s32 wm_busOpen (u32 BusType,
 u32 Mode
 wm_busSettings_u * Settings);

3.9.3.1 Parameters

BusType:
Type of the bus to open. Defined values are:

• WM_BUS_SPI1 for SPI 1 bus (not available on P5186 products) ;
• WM_BUS_SPI3 for SPI 3 bus (only available on P5186 products) ;
• WM_BUS_SOFT_I2C for I2C software bus.
• WM_BUS_HARD_I2C for I2C hardware bus (only available on Q3106,

Q24X6, Q24 Classic, Q24 Plus, Q24 Extended and Q24 Auto);
• WM_BUS_PARALLEL for parallel bus (all WISMO products except

Q2xxx products).

Mode:

Bus mode: the only defined value is WM_BUS_MODE_STANDARD.

Settings:
Pointer on settings union, defined as below.

typedef union
{
 wm_busSPI1Settings_t Spi1;
 wm_busI2CSoftSettings_t I2C_Soft;
 wm_busI2CHardSettings_t I2C_Hard;
 wm_busParallelSettings_t Parallel;
} wm_busSettings_u;

3.9.3.1.1 SPI bus settings

To open the SPI bus you must use the SPI member of this union, defined as below:
typedef struct
{
 u32 Clk_Speed;
 u32 Clk_Mode;
 u32 ChipSelect;
 u32 ChipSelectPolarity;
 u32 LsbFirst;
 u32 GpioChipSelect;
 u32 WriteByteHandling;
} wm_busSPI1Settings_t;

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 93 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

• The "Clk_Speed" parameter is the SPI clock speed. Defined values are defined in
the table below:

Speed constant

Allowed on
Q2XX3 and

P3XX3
products

Allowed on
QXXX6,

P3XX6, Q24
Classic, Q24

Plus, Q24
Extended
and Q24

Auto
products

Allowed on
P5186

products

WM_BUS_SPI_SCL_SPEED_13Mhz Yes

WM_BUS_SPI_SCL_SPEED_6_5Mhz Yes Yes

WM_BUS_SPI_SCL_SPEED_4_33Mhz Yes Yes

WM_BUS_SPI_SCL_SPEED_3_25Mhz Yes Yes Yes

WM_BUS_SPI_SCL_SPEED_2_6Mhz Yes

WM_BUS_SPI_SCL_SPEED_2_167Mhz Yes Yes

WM_BUS_SPI_SCL_SPEED_1_857Mhz Yes

WM_BUS_SPI_SCL_SPEED_1_625Mhz Yes Yes

WM_BUS_SPI_SCL_SPEED_1_44Mhz Yes

WM_BUS_SPI_SCL_SPEED_1_3Mhz Yes

WM_BUS_SPI_SCL_SPEED_1_181Mhz Yes

WM_BUS_SPI_SCL_SPEED_1_083Mhz Yes

WM_BUS_SPI_SCL_SPEED_1Mhz Yes

WM_BUS_SPI_SCL_SPEED_926Khz Yes

WM_BUS_SPI_SCL_SPEED_867Khz Yes

WM_BUS_SPI_SCL_SPEED_812Khz Yes Yes

WM_BUS_SPI_SCL_SPEED_101Khz Yes

• The "Clk_Mode" parameter is the SPI clock mode ; defined values are:

WM_BUS_SPI_SCK_MODE_0 rest state 0, data valid on rising edge

WM_BUS_SPI_SCK_MODE_1 rest state 0, data valid on falling edge

WM_BUS_SPI_SCK_MODE_2 rest state 1, data valid on rising edge

WM_BUS_SPI_SCK_MODE_3 rest state 1, data valid on falling edge

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 94 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

• The "ChipSelect" parameter selects the valid pin; defined values are:

WM_BUS_SPI_ADDRESS_SPI_EN

SPI_EN is the selected pin
only for Q2XX3 and P3XX3 products ;
for Q24X6, Q25X1, Q24 Classic, Q24 Plus,
Q24 Extended and Q24 Auto products, the
GPO 3 pin must be used ;
for P32X6 product, the GPIO 8 pin must be
used ;
not available on Q31X6 and P5186
products)

WM_BUS_SPI_ADDRESS_SPI_EN_Q31 SPI_EN is the selected pin, only available for
Q31X6 products)

WM_BUS_SPI_ADDRESS_SPI_AUX

SPI_AUX is the selected pin
only for Q2XX3 and P3XX3 products ;
for Q24X6, P32X6, Q24 Classic, Q24 Plus,
Q24 Extended and Q24 Auto products, the
GPO 0 pin must be used;
not available on Q31X6 and P5186
products

WM_BUS_SPI_ADDRESS_CS_GPIO
Use a GPIO as ChipSelect, the
GpioChipSelect and WriteByteHandling
parameters must be used) ;

WM_BUS_SPI_ADDRESS_CS_NONE

This Chip Select signal is not handled by
the Open AT® BUS API. The application
should allocate a GPIO to handle itself the
Chip Select signal.

• The "ChipSelectPolarity" parameter sets the polarity of the ChipSelect; defined
values are:

• WM_BUS_SPI_CS_POL_LOW (active low) ;
• WM_BUS_SPI_CS_POL_HIGH (active high) ;

• The "LsbFirst" parameter sets whether the data sent/received through the SPI
bus is LSB or MSB ; this parameter applies only to the data, the opcode and address
sent are always MSB first ; defined values are:

• WM_BUS_SPI_LSB_FIRST ;
• WM_BUS_SPI_MSB_FIRST

• The "GpioChipSelect" parameter is used only if the "ChipSelect" parameter is set
to the WM_BUS_SPI_ADDRESS_CS_GPIO value ; it is the GPIO label to use as a chip
select. It has to be a member of the wm_ioLabel_u union (see §3.7.3.1.2).

• The "WriteByteHandling" parameter is used only if the "ChipSelect" parameter is
set to the WM_BUS_SPI_ADDRESS_CS_GPIO value ; defined values are:

• WM_BUS_SPI_BYTE_HANDLING (GPIO signal state change on each written
or read byte; word size is defined on read or write process request, in the
AccessMode configuration structure) ;

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 95 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

• WM_BUS_SPI_FRAME_HANDLING (GPIO signal works as other chip select
pins).

3.9.3.1.2 I2CSoft bus

To open the I2C Soft bus you must use the "I2C_Soft" parameter of the union, defined
as below:

typedef struct
{
 u32 Scl_Gpio;
 u32 Sda_Gpio;
} wm_busI2CSoftSettings_t;

The Scl_Gpio parameter is the label of the GPIO used to handle the SCL signal.
The Sda_Gpio parameter is the label of the GPIO used to handle the SDA signal.
Each of these labels must be a member of the wm_ioLabel_u union (see §3.7.3.1.2).

3.9.3.1.3 I2Chard bus

To open the I2C bus the application has to use the "I2C_Hard" parameter of the union,
defined as below:

typedef struct
{
 u32 Clk_Speed;
} wm_busI2CHardSettings_t;

The Clk_Speed parameter sets the required I2C bus speed. Defined values are:

• WM_BUS_I2CHARD_CLK_STD (standard I2C bus speed, 100 Kbit/s)
• WM_BUS_I2CHARD_CLK_FAST (fast I2C bus speed, 400 Kbit/s)

3.9.3.1.4 Parallel bus

To open the parallel bus you must use the "Parallel" parameter of the union, defined as
below:

typedef struct
{
 u32 ChipSelect;
 u32 Lcd_AddressSetUpTime;
 u32 Lcd_LcdenSignalPulseDuration;
 u32 Lcd_PolarityControl;
 u32 Csusr_NbWaitState;
 u32 ReverseOrDirectOrder;
} wm_busParaSettings_t;

• The "ChipSelect" parameter selects the valid pin; defined values are:

• WM_BUS_PARA_CSUSER_AS_CS (Gpio 5 is the selected pin);
• WM_BUS_PARA_LCDEN_AS_CS (LCD_EN is the selected pin);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 96 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

• The "Lcd_AddressSetUpTime" parameter sets the time between the setting of an
address for the parallel bus and the activation of the LCD_EN pin (only if LCD_EN is
the Chip Select). It is the T1 time on the figure 3 below. The allowed values are from
0 to 31. The resulting time is :

For P32X3 product: (X * 38.5) ns ;
For P32X6 product: (1 + 2 X) * 19 ns.

Figure 3: Parallel bus chronogram

• The "Lcd_LcdenSignalPulseDuration" parameter sets the time during which the
LCD_EN pin is valid (only if LCD_EN is the Chip Select). It is the T2 time on the figure 3
above. The allowed values are from 0 to 31. The resulting time is:

For P32X3 product: (X + 1.5) * 38.5 ns;
For P32X6 product: (1 + 2 * (X + 1)) * 19 ns.

(Important Warning, for this product, the 0 value in considered as 32).

• The "Lcd_PolarityControl" parameter sets the polarity of the ChipSelect.
If LCD_EN is the ChipSelect; the defined values are:

• WM_BUS_PARA_LCDEN_POLARITY_LOW
data is sampled on the rising edge from low state to high state of LCD_EN.

• WM_BUS_PARA_LCDEN_POLARITY_HIGH
data is sampled on the falling edge from high state to low state of LCD_EN.

If the GPIO 5 is the ChipSelect, the defined value is:
• WM_BUS_PARA_LCDEN_NOT_USED ;

• The "CsUser_NbWaitState" parameter sets the time during which the data is valid
on the bus (only if the GPIO 5 is the Chip Select) ; defined values are:

• WM_BUS_PARA_CSUSR_0_WAIT_STATE (time of 62 ns) ;
• WM_BUS_PARA_CSUSR_1_WAIT_STATE (time of 100 ns)
• WM_BUS_PARA_CSUSR_2_WAIT_STATE (time of 138 ns)
• WM_BUS_PARA_CSUSR_3_WAIT_STATE (time of 176 ns)

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 97 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

• The "ReverseOrDirectOrder" parameter sets whether the data are sent as written
in the buffer, or reversed before being sent ; defined values are:

• WM_BUS_PARA_DATA_DIRECT_ORDER ;
• WM_BUS_PARA_DATA_REVERSE_ORDER ;

3.9.3.2 Returned Values

On successful completion, the function returns a positive or null Handle, to
use for further Read / Write / Close operations on this bus. Otherwise, the
function will return a negative error value (cf § 3.9.2).

3.9.3.3 Notes

 For I2C Soft bus, the two GPIOs labels provided in the "Settings" parameter must
not be allocated by the Embedded Application for another purpose; only GPIOs are
allowed, using GPI or GPO to open the I2C Soft bus will result as an error.

 I2C Hard bus is only available on Q3106, Q24X6, Q24 Classic, Q24 Plus, Q24
Extended and Q24 Auto.

 For SPI bus, if the ChipSelect is a GPIO, it must not be allocated by the Embedded
Application for another purpose ; only GPIO and GPO are allowed, using GPI to
open the SPI bus will result as an error.

 Only on Q3106, Q24X6, Q24 Classic, Q24 Plus, Q24 Extended and Q24 Auto, SPI1
bus and I2C Hard bus use the same GPIO, it must not use both bus at the same
time.

 For Parallel bus, if the Chip Select is the GPIO 5, it must not be allocated by the
Embedded Application for other purpose. On P32X6 product, the LCD_EN chip
select is available only if the GPIO 8 is not allocated by any application.

 A bus is available only if it was not opened before by AT commands with the
same parameters (AT+WBM), otherwise, the wm_busOpen will result as an error.
If a bus is opened by the Embedded Application, it won’t be available to AT
commands, until the use of wm_busClose function.

3.9.4 The wm_busClose Function

The wm_busClose function allows to close a bus previously allocated by the
wm_busOpen function.

Its prototype is :

s32 wm_busClose (s32 Handle);

3.9.4.1 Parameters

Handle:
Handle of the bus to close, returned by wm_busOpen function.

3.9.4.2 Returned Values

On successful completion, the function returns 0.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 98 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

Otherwise, the function will return a negative error value (cf § 3.9.2: "Returned
values definition").

3.9.4.3 Note

Once a bus is closed, the features corresponding to the required configuration are
disabled, and the multiplexed GPIO are available again for allocation by the Open AT
application, or through the standard AT commands.

3.9.5 The wm_busWrite Function

The wm_busWrite function allows to write on a bus previously allocated by the
wm_busOpen function.

Its prototype is:

s32 wm_busWrite (s32 Handle
 wm_busAccess_t * pAccessMode,
 void * pDataToWrite,
 u32 NbBytes);

3.9.5.1 Parameters

Handle:
Handle of the bus device to write on, returned by wm_busOpen function.

pAccessMode:

Mode to use to access the device.
This parameter is defined using the following type:

typedef struct
{
 u32 Address;
 u32 Opcode;
 u8 OpcodeLength;
 u8 AddressLength;
 u8 AccessSize; (reserved for future products)
} wm_busAccess_t;
This parameter is processed differently according the bus type:

• For SPI bus:
For Q24X3 and P32X3 products:

• one byte can be sent through the "Opcode" parameter
(only the LSByte is used ; if "OpcodeLength" is less than 8 bits, only
the MSBits of the LSByte are used),

• two bytes can be sent through the "Address" parameter
(only the two LSBytes are used ; if OpcodeLength is less than 24 bits,
only the MSBits of the two LSBytes are used),

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 99 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

• the OpcodeLength is the sum of Opcode and Address lengths in
bits

(if OpcodeLength is 0, nothing is sent ;
if OpcodeLength < 9, just Opcode is sent ;
if 8 < OpcodeLength < 25, Opcode then Address are sent),

• the "AddressLength" parameter is not used.

For Q24X6 and P32X6, Q24 Classic, Q24 Plus, Q24 Extended and Q24
Auto products:

Up to 32 bits can be sent through the "Opcode" parameter, according
to the "OpcodeLength" parameter (in bits).
if OpcodeLength is less than 32 bits, only MSBits are used.

Up to 32 bits can be sent through the "Address" parameter, according
to the "AddressLength" parameter (in bits).
if AddressLength is less than 32 bits, only MSBits are used.

• For I2C soft bus:
Only the "Address" parameter is used.
This parameter is the slave address byte. This is a 7-bits address, shift
to left from 1 bit, padded with the LSB set to 0 (to write), and sent on
the I2C bus before performing the writing operation.

• For I2C hard bus:
For Q3106, Q24X6, Q24 Classic, Q24 Plus, Q24 Extended and Q24
Auto products:
only the "Address" parameter is used.
This parameter is the slave address byte. This is a 7-bits address, shift
to left from 1 bit, padded with the LSB set to 0 (to write), and sent on
the I2C hard bus before performing the writing operation.

• For Parallel bus:
Only the "Address" parameter is used.
This parameter is used to set the A2 pin value ; it can be set to
following values:
WM_BUS_PARA_ADDRESS_A2_SET, to set the A2 pin ;
WM_BUS_PARA_ADDRESS_A2_RESET, to reset the A2 pin

pDataToWrite:

Buffer containing data to write on the requested bus.

NbBytes

Size (in bytes) of the pDataToWrite buffer.

3.9.5.2 Returned Values

On successful completion, the function returns the number of bytes written.
Otherwise, the function will return a negative error value (cf § 3.9.2).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 100 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.9.6 The wm_busRead Function

The wm_busRead function allows to read on a bus previously allocated by the
wm_busOpen function.

Its prototype is:

s32 wm_busRead (s32 Handle
 wm_busAccess_t * pAccessMode,
 void * pDataToRead,
 u32 NbBytes);

3.9.6.1 Parameters

Handle:
Handle of the bus device to read from, returned by wm_busOpen function.

pAccessMode:

Mode to use to access the device.
This parameter is defined using the following type:

typedef struct
{
 u32 Address;
 u32 Opcode;
 u8 OpcodeLength;
 u8 AddressLength;
 u8 AccessSize; (reserved for future products)

} wm_busAccess_t;

This parameter is processed differently according the bus type:

• For SPI bus:
For Q24X3 and P32X3 products:
one byte can be sent through the "Opcode" parameter (only the LSByte
is used ; if OpcodeLength is less than 8 bits, only the MSBits of the
LSByte are used),

two bytes can be sent through the "Address" parameter (only the two
LSBytes are used ; if OpcodeLength is less than 24 bits, only the
MSBits of the two LSBytes are used),

the OpcodeLength is the sum of Opcode and Address lengths in bits:
if OpcodeLength = 0, nothing is sent;
if OpcodeLength < 9, Opcode only is sent;
if 8 < OpcodeLength < 25, Opcode first and then Address are sent,

the "AddressLength" parameter is not used.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 101 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

For Q24X6 and P32X6, Q24 Classic, Q24 Plus, Q24 Extended and Q24
Auto products:
Up to 32 bits can be sent through the "Opcode" parameter, according
to the "OpcodeLength" parameter (in bits).
If OpcodeLength is less than 32 bits, only MSBits are used.

Up to 32 bits can be sent through the "Address" parameter, according
to the AddressLength parameter (in bits). If AddressLength is less than
32 bits, only MSBits are used.

• For I2C soft bus:
Only the "Address" parameter is used as slave address byte. This is a
7-bits address, shift to left from 1 bit, padded with the LSB set to 1 (to
read), and sent on the I2C bus before performing the reading
operation.

• For I2C hard bus:
For Q3106, Q24X6, Q24 Classic, Q24 Plus, Q24 Extended and Q24
Auto products:
only the "Address" parameter is used as slave address byte. This is a
7-bits address, shift to left from 1 bit, padded with the LSB set to 1 (to
read), and sent on the I2C hard bus before performing the reading
operation.

• For Parallel bus:
Only the "Address" parameter is used to set the A2 pin value; the
possible values are:

WM_BUS_PARA_ADDRESS_A2_SET, to set the A2 pin;
WM_BUS_PARA_ADDRESS_A2_RESET, to reset the A2 pin

pDataToRead:

Buffer containing data read from the requested bus.

NbBytes

Size (in bytes) of the pDataToRead buffer.

3.9.6.2 Returned Values

On successful completion, the function returns the number of bytes read.
Otherwise, the function will return a negative error value (cf §3.9.2).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 102 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.9.7 Error codes values

Here are some numerical error codes:

Error code Error value

WM_BUS_PROC_DONE 0

WM_BUS_MODE_UNKNOWN_TYPE -1

WM_BUS_UNKNOWN_TYPE -11

WM_BUS_BAD_PARAMETER -12

WM_BUS_SPI1_ALREADY_USED -13

WM_BUS_I2C_SOFT_ALREADY_USED -15

WM_BUS_UNKNOWN_HANDLE -21

WM_BUS_HANDLE_NOT_OPENED -22

WM_BUS_NO_MORE_HANDLE_FREE -23

WM_BUS_NOT_CONNECTED_ON_I2C -31

WM_BUS_NOT_ALLOWED_ADDRESS -32

WM_BUS_I2C_SOFT_GPIO_NOT_GPIO -33

WM_BUS_SPI_LCDEN_NOT_FREE -34

WM_BUS_SPI_AUX_NOT_FREE -35

WM_BUS_SPI_GPIO_CS_NOT_GPIO -36

WM_BUS_SPI_GPIO_CS_NOT_FREE -37

3.10 Scratch Memory API

The Scratch Memory API does no more exists since Open AT® V3.00; to
implement the Over The Air download, the Application & Data Storage API has to
be used instead.

The Scratch Memory functions below still exist, but all will always return the
WM_SCRATCH_MEM_NOTAVAIL error code:

s32 wm_scmOpen (u8 Mode);
s32 wm_scmClose (void);
s32 wm_scmRead (u32 Size, void * Data);
s32 wm_scmWrite (u32 Size, void * Data);
s32 wm_scmSeek (s32 Pos);
s32 wm_scmInstall (void);

3.10.1 Required Header

This API is defined in wm_scmem.h header file.
This file is included by wm_apm.h.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 103 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.10.2 Returned values definition

WM_SCRATCH_MEM_NOTAVAIL: the Scratch Memory is not available.

3.11 Lists management API

3.11.1 Required Header

This API is defined in wm_list.h header file.
This file is included by wm_apm.h.

3.11.2 Types definition

3.11.2.1 The wm_lst_t type

This type is used to handle a list created by the list API.
typedef void * wm_lst_t;

3.11.2.2 The wm_lstTable_t structure

This structure is used to define a comparison callback and an Item destruction
callback:

typedef struct
{
 s16 (* CompareItem) (void *, void *);
 void (* FreeItem) (void *);
} wm_lstTable_t;

The CompareItem callback is called every time the lists API needs to compare two
items.

It returns:
• OK if both provided elements are considered to be similar.
• –1 if the first element is considered to be smaller than the second one.
• 1 if the first element is considered to be greater than the second one.

If the CompareItem callback is set to NULL, the wm_strcmp function will be used by
default.

The FreeItem callback is called each time the list API needs to delete an item. It
should then perform its specific processing before releasing the provided pointer.
If the FreeItem callback is set to NULL, the wm_osReleaseMemory function will be used
by default.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 104 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.11.3 The wm_lstCreate Function

The wm_lstCreate function allows to create a list, using the provided attributes and
callbacks.

Its prototype is :

wm_lst_t wm_lstCreate (u16 Attr,
 wm_lstTable_t * funcTable);

3.11.3.1 Parameters

Attr:
List attributes, which can be combined by a logical OR among following
defined values:

• WM_LIST_NONE : no specific attribute ;
• WM_LIST_SORTED : this list is a sorted one (see wm_lstAddItem and

wm_lstInsertItem descriptions for more details) ;
• WM_LIST_NODUPLICATES: this list does not allow duplicate items (see

wm_lstAddItem and wm_lstInsertItem descriptions for more details).

funcTable:

Pointer on a structure containing the comparison and the item destruction
callbacks.

3.11.3.2 Returned Values

This function will return a list pointer corresponding to the created list. This one must
be used in all further operations on this list.

3.11.4 The wm_lstDestroy Function

The wm_lstDestroy function allows to clear and then destroy the provided list.

Its prototype is:

void wm_lstDestroy (wm_lst_t list);

list:

The list to destroy.

Note:
This function calls the FreeItem callback (if defined) on each item to delete it, before
destroying the list.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 105 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.11.5 The wm_lstClear Function

The wm_lstClear function allows to clear all the provided list items, without
destroying the list itself (please refer to wm_lstDeleteItem() function for notes on item
deletion).

Its prototype is:

void wm_lstClear (wm_lst_t list);

list: the list to clear.

Note:
This function calls the FreeItem callback (if defined) on each item to delete it.

3.11.6 The wm_lstGetCount Function

The wm_lstGetCount function returns the current item count.

Its prototype is :

u16 wm_lstGetCount (wm_lst_t list);

3.11.6.1 Parameters

list:
The list from which to get the item count.

3.11.6.2 Returned Values

The number of items of the provided list. The function returns 0 if the list is empty.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 106 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.11.7 The wm_lstAddItem Function

The wm_lstAddItem function allows to add an item to the provided list.

Its prototype is :

s16 wm_lstAddItem (wm_lst_t list
 void * item);

3.11.7.1 Parameters

list: The list to add an item to.

item: The item to add to the list.

3.11.7.2 Returned Values

The position of the added item, or ERROR if an error occured.

Notes:

 The item pointer should not point on a const or local buffer, as it will be released in
any item destruction operation.

 If the list has the WM_LIST_SORTED attribute, the item will be inserted in the
appropriate place after calling of the CompareItem callback (if defined). Otherwise,
the item is appended at the end of the list.

 If the list has the WM_LIST_NODUPLICATES, the item will not be inserted if the
CompareItem callback (if defined) returns 0 on any previously added item. In this
case, the returned index is the existing item’s one.

3.11.8 The wm_lstInsertItem Function

The wm_lstInsertItem function allows to insert an item to the provided list at the
given location.
Its prototype is :

s16 wm_lstInsertItem (wm_lst_t list
 void * item
 u16 index);

3.11.8.1 Parameters

list: The list to add an item to.

item: The item to add to the list.

index: The location where to add the item.

3.11.8.2 Returned Values

The position of the added item, or ERROR if an error occured.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 107 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.11.8.3 Notes

 The item pointer should not point on a const or local buffer, as it will be released
in any item destruction operation.

 This function does not care of the list attributes and will always insert the
provided item at the given index.

3.11.9 The wm_lstGetItem Function

The wm_lstGetItem function allows to read an item from the provided list, at the given
index.

Its prototype is :

void * wm_lstGetItem (wm_lst_t list
 u16 index);

3.11.9.1 Parameters

list:
The list from which to get the item.

index:
The location where to get the item.

3.11.9.2 Returned Values

A pointer on the requested item, or NULL if the index was not valid.

3.11.10 The wm_lstDeleteItem Function

The wm_lstDeleteItem function allows to delete an item of the provided list at the
given indexs.

Its prototype is :

s16 wm_lstDeleteItem (wm_lst_t list
 u16 index);

3.11.10.1 Parameters

list:
The list to delete an item from.

index:
The location where to delete the item.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 108 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.11.10.2 Returned Values

The number of remaining items in the list, or ERROR if an error did occur.

Note:
This function calls the FreeItem callback (if defined) on the requested item to delete it.

3.11.11 The wm_lstFindItem Function

The wm_lstFindItem function allows to find out an item in the provided list.

Its prototype is :

s16 wm_lstFindItem (wm_lst_t list
 void * item);

3.11.11.1 Parameters

list: The list where to search.

item: The item to find.

3.11.11.2 Returned Values

The index of the found item if any, ERROR otherwise.

Note:
This function calls the CompareItem callback (if defined) on each list item, until it
returns 0.

3.11.12 The wm_lstFindAllItem Function

The wm_lstFindAllItem function allows to find all items matching the provided one, in
the given list.

Its prototype is :

s16 * wm_lstFindAllItem (wm_lst_t list
 void * item);

3.11.12.1 Parameters

list: The list where to search.

item: The item to find.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 109 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.11.12.2 Returned Values

A s16 buffer containing the indexes of all the items found, and terminated by
ERROR.
Important remark: This buffer should be released by the application when its
processing is done.

Notes:

 This function calls the CompareItem callback (if defined) on each list item to get
all those which match with the provided item.

 This function should be used only if the list can not be changed during the
resulting buffer processing. Otherwise the wm_lstFindNextItem should be
used.

3.11.13 The wm_lstFindNextItem Function

The wm_lstFindNextItem function allows to find the next item index of the given list,
which correspond with the provided one.

Its prototype is :

s16 wm_lstFindNextItem (wm_lst_t list
 void * item);

3.11.13.1 Parameters

list: The list to search in.

item: The item to find.

3.11.13.2 Returned Values

The index of the next found item if any, otherwise ERROR.

Note:

 This function calls the CompareItem callback (if defined) on each list item to get
those which match with the provided item. It should be called until it returns
ERROR, in order to get the index of all items corresponding to the provided
one. The difference with the wm_lstFindAllItem function is that, even if the
list is updated between two calls to wm_lstFindNextItem, the function will not
return a previously found item. To restart a search with the
wm_lstFindNextItem, the wm_lstResetItem should be called first.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 110 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.11.14 The wm_lstResetItem Function

The wm_lstResetItem function allows to reset all previously found items by the
wm_lstFindNextItem function.

Its prototype is :

void wm_lstResetItem (wm_lst_t list
 void * item);

3.11.14.1 Parameters

list: The list to search in.

item: The item to search, in order to reset all previously found items.

Note:

 This function calls the CompareItem callback (if defined) on each list item to
get those which match with the provided one.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 111 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.12 Sound API

3.12.1 Required header

This API is defined in wm_snd.h header file.
This file is included by wm_apm.h.

3.12.2 The wm_sndTonePlay Function

This function allows a tone to be played on the current speaker or on the buzzer.
Frequency, gain and duration can be specified.

Its prototype is:

s32 wm_sndTonePlay (wm_snd_dest_e Destination,
u16 Frequency,
u8 Duration,
u8 Gain);

3.12.2.1 Parameters

Destination:
Destination of the requested tone to play: speaker or buzzer.

typedef enum {
WM_SND_DEST_BUZZER,
WM_SND_DEST_SPEAKER,
WM_SND_DEST_GSM /* do not use */
} wm_snd_dest_e;

Frequency:

For speaker: range is 1 Hz to 3999 Hz.
For buzzer: range is 1 Hz to 50000 Hz.

Duration:

This parameter sets tone duration (in unit of 20 ms).
Remark: when <duration> = 0, the duration is infinite, and the tone should
be stopped by wm_sndToneStop.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 112 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

Gain:
This parameter sets the tone gain.
Range of values is from 0 to 15.

<gain> Speaker (db) Buzzer (db)

0 0 -0.25

1 -0.5 -0.5

2 -1 -1

3 -1.5 -1.5

4 -2 -2

5 -3 -3

6 -6 -6

7 -9 -9

8 -12 -12

9 -15 -15

10 -18 -18

11 -24 -24

12 -30 -30

13 -36 -40

14 -42 -infinite

15 -infinite -infinite

3.12.2.2 Returned values

OK on success,or a negative error value

3.12.2.3 Example

An example of playing tone:

wm_sndTonePlay (WM_SND_DEST_BUZZER, 1000, 0, 9);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 113 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.12.3 The wm_sndTonePlayExt Function

This function allows a dual tone (two frequencies) to be played on the specified
output. Frequencies, gains and duration can be specified.

Note : only the speaker output is able to play two frequencies tones. The second tone
parameters will be ignored on the buzzer output.

Its prototype is:

s32 wm_sndTonePlayExt (wm_snd_dest_e Destination,
u16 Frequency,
u16 Frequency2,
u8 Duration,
u8 Gain,
u8 Gain2);

3.12.3.1 Parameters

Destination:
Destination of the requested tone to play: speaker or buzzer.

typedef enum {
WM_SND_DEST_BUZZER,
WM_SND_DEST_SPEAKER,
WM_SND_DEST_GSM /* do not use */
} wm_snd_dest_e;

Frequency, Frequency2:

For speaker: range is from 1 Hz to 3999 Hz.
For buzzer: range is from 1 Hz to 50000 Hz.

Please remind that the Frequency2 parameter will be only processed on the
speaker output.

Duration:

This parameter sets tone duration (in unit of 20 ms).
Remark: when <duration> = 0, the duration is infinite, and the tone should
be stopped by wm_sndToneStop.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 114 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

Gain, Gain2:
This parameter sets the tones gain. Gain parameter applies to Frequency
value, and Gain2 applies to the Frequency2 one.

Range of values is from 0 to 15.

<gain> Speaker (db) Buzzer (db)

0 0 -0.25

1 -0.5 -0.5

2 -1 -1

3 -1.5 -1.5

4 -2 -2

5 -3 -3

6 -6 -6

7 -9 -9

8 -12 -12

9 -15 -15

10 -18 -18

11 -24 -24

12 -30 -30

13 -36 -40

14 -42 -infinite

15 -infinite -infinite

3.12.3.2 Returned values

OK on success, or a negative error value

3.12.3.3 Example

An example of playing tone:

wm_sndTonePlayExt (WM_SND_DEST_SPEAKER, 1000, 2000, 0, 9, 10);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 115 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.12.4 The wm_sndToneStop Function

This function stops playing a tone on the current speaker or on the buzzer.

Its prototype is:
s32 wm_sndToneStop (wm_snd_dest_e Destination);

3.12.4.1 Parameters

Destination:
Destination of the current playing tone to stop: speaker or buzzer.

3.12.4.2 Returned values

OK on success, or a negative error value

3.12.4.3 Example

An example of stopping tone:

wm_sndToneStop (WM_SND_DEST_BUZZER);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 116 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.12.5 The wm_sndDtmfPlay Function

This function allows a DTMF tone to be played on the current speaker or over the
GSM network (in communication only). DTMF, gain (only for speaker) and duration
can be specified.

Remark: It is not possible to play DTMF on buzzer.

Its prototype is:

s32 wm_sndDtmfPlay (wm_snd_dest_e Destination,
ascii Dtmf,
u8 Duration,
u8 Gain);

3.12.5.1 Parameters

Destination:
Destination of the requested DTMF tone to play: speaker or/and over the
GSM network (in communication only).

typedef enum {
WM_SND_DEST_BUZZER, /* do not use */
WM_SND_DEST_SPEAKER,
WM_SND_DEST_GSM
} wm_snd_dest_e;

Dtmf:

Value must be in { ‘0’ - ‘9’, ’*’, ’#’, ’A’, ’B’, ’C’, ’D’ }

Duration:
This parameter sets tone duration (in unit of 20 ms).
Remark: when <duration> = 0, the duration is infinite, and the tone should
be stopped by wm_sndDtmfStop.

Gain:

Only for speaker.
This parameter sets the tone gain.
Range of values is from 0 to 15.

3.12.5.2 Returned values

OK on success, or a negative error value

3.12.5.3 Example

An example of playing DTMF:

wm_sndDtmfPlay (WM_SND_DEST_SPEAKER, ‘A’, 100, 9);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 117 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.12.6 The wm_sndDtmfStop Function

This function stops playing a dtmf on the current speaker or over the GSM network
(in communication only).

Its prototype is:

s32 wm_sndDtmfStop (wm_snd_dest_e Destination);

3.12.6.1 Parameters

Destination:
Destination of the current playing tone to stop: has to be the speaker (GSM
network DTMF can not be stopped).

3.12.6.2 Returned values

OK on success, or a negative error value

3.12.6.3 Example

An example of stopping DTMF:

wm_sndDtmfStop (WM_SND_DEST_SPEAKER);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 118 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.12.7 The wm_sndMelodyPlay Function

This function plays a melody. Destination, Melody, Tempo, Cycle and gain can be
specified.

Its prototype is:

s32 wm_melody_play (wm_snd_dest_e Destination,
u16* Melody,
u16 Tempo,
u8 Cycle,
u8 Gain);

3.12.7.1 Parameters

Destination:
Destination of the melody to play: speaker or buzzer.

typedef enum {
 WM_SND_DEST_BUZZER,

 WM_SND_DEST_SPEAKER,
 WM_SND_DEST_GSM /* do not use */
} wm_snd_dest_e;

Melody:

Melody to play. A melody is defined by an u16 table, where each element
defines a note event, with a duration and a sound definition.

// Melody sample
const u16 MyMelody []=
{

WM_SND_E1 | WM_SND_QUAVER ,
WM_SND_F1 | WM_SND_MBLACK ,
WM_SND_G6S | WM_SND_QUAVER ,

};

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 119 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

typedef enum {
 WM_SND_C0 , // C0
 WM_SND_C0S , // C0#
 WM_SND_D0 , // D0
 WM_SND_D0S , // D0#
 WM_SND_E0 , // E0
 WM_SND_F0 , // F0
 WM_SND_F0S , // F0#
 WM_SND_G0 , // G0
 WM_SND_G0S , // G0#
 WM_SND_A0 , // A0
 WM_SND_A0S , // A0#
 WM_SND_B0 , // B0
 WM_SND_C1 , // C1

…
 WM_SND_NO_SOUND=0xFF
} wm_sndNote_e;

#define WM_SND_ROUND 0x1000
#define WM_SND_MWHITEP 0x0C00
#define WM_SND_MWHITE 0x0800
#define WM_SND_MBLACKP 0x0600
#define WM_SND_MBLACK 0x0400
#define WM_SND_QUAVERP 0x0300
#define WM_SND_QUAVER 0x0200
#define WM_SND_MSHORT 0x0100

Tempo:

Tempo to apply (duration a black x 20 ms).

Cycle:
number of times that the melody should be played (0 = infinite)

Gain:

Volume to apply, range of values is 0 to 15.

3.12.7.2 Returned values

OK on success, or a negative error value

3.12.7.3 Example

An example of playing melody:

wm_sndMelodyPlay (WM_SND_DEST_SPEAKER, MyMelody, 6, 1, 9);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 120 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.12.8 The wm_sndMelodyStop Function

This function stops playing a melody on the current speaker or on the buzzer.

Its prototype is:
s32 wm_sndMelodyStop (wm_snd_dest_e Destination);

3.12.8.1 Parameters

Destination:
Destination of the current playing melody to stop: speaker or buzzer.

3.12.8.2 Returned values

OK on success, or a negative error value

3.12.8.3 Example

An example of stopping melody:

wm_sndMelodyStop (WM_SND_DEST_SPEAKER);

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 121 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.13 Standard Library

3.13.1 Required Header

This API is defined in wm_stdio.h header file.
This file is included by wm_apm.h.

3.13.2 Standard C function set

The available standard APIs are defined below:

ascii * wm_strcpy (ascii * dst, ascii * src);
ascii * wm_strncpy (ascii * dst, ascii * src, u32 n);
ascii * wm_strcat (ascii * dst, ascii * src);
ascii * wm_strncat (ascii * dst, ascii * src, u32 n);
u32 wm_strlen (ascii * str);
s32 wm_strcmp (ascii * s1, ascii * s2);
s32 wm_strncmp (ascii * s1, ascii * s2, u32 n);
s32 wm_stricmp (ascii * s1, ascii * s2);
s32 wm_strnicmp (ascii * s1, ascii * s2, u32 n);
ascii * wm_memset (ascii * dst, ascii c, u32 n);
ascii * wm_memcpy (ascii * dst, ascii * src, u32 n);
s32 wm_memcmp (ascii * dst, ascii * src, u32 n);
ascii * wm_itoa (s32 a, ascii * szBuffer);
s32 wm_atoi (ascii * p);
u8 wm_sprintf (ascii * buffer, ascii * fmt, ...);

Important remark about GCC compiler:

When using GCC compiler, due to internal standard C library architecture, it
is strongly not recommended to use the "%f" mode in the wm_sprintf
function in order to convert a float variable to a string. This will lead to an
ARM exception (product reset).
A workaround for this conversion will be:

float MyFloat; // float to display
ascii MyString [100]; // destination string
s16 d,f;
d = (s16) MyFloat * 1000; // Decimal precision: 3 digits
f = (MyFLoat * 1000) - d; // Decimal precision : 3 digits
wm_sprintf (MyString, "%d.%03d", (s16)MyFloat, f); // Decimal precision : 3
digits

3.13.3 String processing function set

Some string processing functions are also available in this standard API.

Note: All following functions will result as an ARM exception if a requested ascii *
parameter is NULL.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 122 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

ascii wm_isascii (ascii c);

Returns c if it is an ascii character (‘a’/’A’ to ‘z’/’Z’), 0 otherwise.
ascii wm_isdigit (ascii c);

Returns c if it is a digit character (‘0’ to ‘9’), 0 otherwise.
ascii wm_ishexa (ascii c);

Returns c if it is an hexadecimal character (‘0’ to ‘9’, ‘a’/’A’ to ‘f’/’F’), 0 otherwise.
bool wm_isnumstring (ascii * string);

Returns TRUE if string is a numeric one, FALSE otherwise.
bool wm_ishexastring (ascii * string);

Returns TRUE if string is an hexadecimal one, FALSE otherwise.
bool wm_isphonestring (ascii * string);

Returns TRUE if string is a valid phone number (national or international format),
FALSE otherwise.

u32 wm_hexatoi (ascii * src, u16 iLen);
If src is an hexadecimal string, converts it to a returned u32 of the given length, and
0 otherwise. As an example: wm_hexatoi ("1A", 2) returns 26, wm_hexatoi ("1A", 1)
returns 1

u8 * wm_hexatoibuf (u8 * dst, ascii * src);
If src is an hexadecimal string, converts it to an u8 * buffer and returns a pointer on
dst, and NULL otherwise. As an example, wm_hexatoibuf (dst, "1F06") returns a 2
bytes buffer: 0x1F and 0x06)

ascii * wm_itohexa (ascii * dst, u32 nb, u8 len);
Converts nb to an hexadecimal string of the given length and returns a pointer on
dst. For example, wm_itohexa (dst, 0xD3, 2) returns "D3", wm_itohexa (dst, 0xD3,
4) returns "00D3".

ascii * wm_ibuftohexa (ascii * dst, u8 * src, u16 len);
Converts the u8 buffer src to an hexadecimal string of the given length and returns
a pointer on dst. Example with the src buffer filled with 3 bytes (0x1A, 0x2B and
0x3C), wm_ibuftohexa (dst, src, 3) returns "1A2B3C").

u16 wm_strSwitch (const ascii * strTest, ...);
This function must be called with a list of strings parameters, terminated by NULL.
strTest is compared with each of these strings (on the length of each string, with no
matter of the case), and returns the index (starting from 1) of the string which
matches if any, 0 otherwise.
Example :
wm_strSwitch ("TEST match", "test", "no match", NULL") returns 1, wm_strSwitch
("nomatch", "nomatch a", "nomatch b", NULL) returns 0.

ascii * wm_strRemoveCRLF (ascii * dst, ascii * src, u16 size);
Copy in dst buffer the content of src buffer, removing CR (0x0D) and LF (0x0A)
characters, from the given size, and returns a pointer on dst.

ascii * wm_strGetParameterString (ascii * dst,
 const ascii * src,
 u16 Position);

If src is a string formatted as an AT response (for example "+RESP: 1,2,3") or as an
AT command (for example "AT+CMD=1,2,3"), the function copies the parameter at
Position offset (starting from 1) if it is present in the dst buffer, and returns a pointer
on dst. It returns NULL otherwise.
Example:
wm_strGetParameterString (dst, "+WIND: 4", 1) returns "4",
wm_strGetParameterString (dst, "+WIND: 5,1", 2) returns "1",
wm_strGetParameterString (dst, "AT+CMGL=\"ALL\"", 1) returns "ALL".

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 123 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.14 Application & Data storage API

This API provides storage cells, where to store data or "dwl" files in order to
update the product software (a "dwl" file may be a Wavecom Core Software
update, an Open AT® application, or an E2P configuration file).

The total Application & Data Storage volume size is configurable with the
AT+WOPEN command

3.14.1 Required Header

This API is defined in wm_ad.h header file.
This file is included by wm_apm.h.

3.14.2 Returned values definition

WM_AD_ERROR_UNDEFINED Generic error code ;

WM_AD_BAD_ARGS Function arguments error ;

WM_AD_BAD_FUNCTION Bad function call ;

WM_AD_FORBIDDEN Access denied or illegal operation attempt ;

WM_AD_OVERFLOW Memory overflow ;

WM_AD_REACHED_END No more elements to enumerate ;

WM_AD_NOT_AVAILABLE Function not available (no initialisation done or
operation not supported) ;

WM_AD_CLEANING_RQD A cleaning operation is required to perform the
requested command.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 124 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.14.3 The wm_adAllocate Function

The wm_adAllocate function allows to allocate a new cell in the Application & Data
storage space.

Its prototype is:

s32 wm_adAllocate (u32 CellId,
 u32 Size,
 wm_adHandle_t * Handle);

3.14.3.1 Parameters

CellId
Unique identifier of the cell to allocate.

Size
Size in bytes of the cell to allocate.
The real used size in flash memory will be the data size + the header size.
The header size is variable, with an average of 16 bytes.
If the Cell size is unknown at allocation time, the WM_AD_UNDEFINED may
be used. In this case, the next wm_adAllocate function calls will all fail, until
the undefined size cell is finalized.

Handle
Returned handle on the new allocated cell.

3.14.3.2 Returned Values

This function will return OK if successful, otherwise, it will return an error
value (please refer to § 3.14.2).

3.14.4 The wm_adRetrieve Function

The wm_adRetrieve function allows to initialize a handle on an already allocated cell.

Its prototype is:

s32 wm_adRetrieve (u32 CellId,
 wm_adHandle_t * Handle);

3.14.4.1 Parameters

CellId
Unique identifier of the cell to retrieve.

Handle
Returned handle on the retrieved cell.

3.14.4.2 Returned Values

This function will return OK if successful, otherwise, it will return an error
value (cf § 3.14.2).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 125 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.14.5 The wm_adFindInit Function

The wm_adFindInit function initializes a cell search, between the two provided cell
identifiers.

Its prototype is:

s32 wm_adFindInit (u32 MinCellId,
 u32 MaxCellId,
 wm_adBrowse_t * BrowseInfo);

3.14.5.1 Parameters

MinCellId
Minimum value for wanted cell identifiers.

MaxCellId
Maximum value for wanted cell identifiers.

BrowseInfo
Returned browse information, to use with the wm_adFindNext() function.

3.14.5.2 Returned Values

This function will return OK if successful, otherwise, it will return an error value (cf §
3.14.2).

3.14.6 The wm_adFindNext Function

The wm_adFindNext function performs a search on the browse informations provided
by the wm_adFindInit() function.

Its prototype is:

s32 wm_adFindNext (wm_adBrowse_t * BrowseInfo
 wm_adHandle_t * Handle);

3.14.6.1 Parameters

BrowseInfo
Browse informations, returned by the wm_adFindInit() function.

Handle
Next found cell handle.

3.14.6.2 Returned Values

This function will return OK if an handle is found, or WM_AD_REACHED_END if there
are no more corresponding handles.
Otherwise, the function will return an error value (cf § 3.14.2).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 126 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.14.7 The wm_adWrite Function

The wm_adWrite function appends data in an allocated cell.

Its prototype is:

s32 wm_adWrite (wm_adHandle_t * Handle,
 u32 Size,
 void * Data);

3.14.7.1 Parameters

Handle
Handle on the allocated cell (returned by the wm_adAllocate or the
wm_adResume functions).

Size
Number of bytes to write.

Data
Data source buffer.

3.14.7.2 Returned Values

This function will return OK if successful, otherwise, the function will return an error
value (cf § 3.14.2).

3.14.8 The wm_adFinalise Function

The wm_adFinalise function finalises the creation of a new record. Once completed,
nothing more can be written in the cell.

Its prototype is:

s32 wm_adFinalise (wm_adHandle_t * Handle);

3.14.8.1 Parameters

Handle
Handle on the allocated cell (returned by the wm_adAllocate or the
wm_adResume functions) to finalise.

3.14.8.2 Returned Values

This function will return OK if successful.
Otherwise, the function will return an error value (cf § 3.14.2).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 127 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.14.9 The wm_adResume Function

The wm_adResume function allows to resume an interrupted write operation, on a
non-yet finalised call.

Its prototype is:

s32 wm_adResume (wm_adHandle_t * Handle);

3.14.9.1 Parameters

Handle
Handle on the non-yet finalized cell (returned by the wm_adFindNext or the
wm_adRetrieve functions).

3.14.9.2 Returned Values

This function will return OK if successful.
Otherwise, the function will return an error value (cf § 3.14.2)

3.14.10 The wm_adInfo Function

The wm_adInfo function provides informations on the requested handle.

Its prototype is:

s32 wm_adInfo (wm_adHandle_t * Handle
 wm_adInfo_t * Info);

3.14.10.1 Parameters

Handle
Handle on the allocated cell from which to get information.

Info
Data returned on the provided handle, using following type :

typedef struct
{
 u32 ID, // Cell identifier
 u32 size, // Cell size
 void * data, // Pointer on stored data
 u32 remaining, // Remaining writable space
 bool finalised // TRUE if entry is finalised
} wm_adInfo_t;

3.14.10.2 Returned Values

This function will return OK if successful.
Otherwise, the function will return an error value (cf § 3.14.2).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 128 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.14.11 The wm_adDelete Function

The wm_adStats function allows to delete the requested record. The cell is not
physically deleted ; it will be on next recompaction process.

Its prototype is:

s32 wm_adDelete (wm_adHandle_t * Handle);

3.14.11.1 Parameters

Handle
Handle on the cell to delete.

3.14.11.2 Returned Values

This function will return OK if successful.
Otherwise, the function will return an error value (cf § 3.14.2).

3.14.12 The wm_adStats Function

The wm_adStats function provides global Application & Data space informations.

Its prototype is:

s32 wm_adStats (wm_adStats_t * Info);

3.14.12.1 Parameters

Info
Informations returned on the provided handle, using following type :
typedef struct
{
 u32 freemem, // Free memory size
 u32 deletedmem, // Deleted memory size
 u32 totalmem, // Total memory size
 u16 numobjects, // Number of objects
 u16 numdeleted, // Number of deleted objects
 bool need_recovery // Set to TRUE, either if the volume state

is not set to WM_AD_READY on startup, or
if a cell allocated with an undefined
size was not finalized before a product
reset.

} wm_adStats_t;

3.14.12.2 Returned Values

This function will return OK if successful.
Otherwise, the function will return an error value (cf § 3.14.2).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 129 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.14.13 The wm_adSpaceState Function

The wm_adSpaceState function provides the Application & Data space current state.

Its prototype is:

wm_adSpaceState_e wm_adSpaceState (void);

3.14.13.1 Returned Values

This return value uses the following type :
typedef enum
{
 WM_AD_READY = 1, // Space is ready
 WM_AD_NOTAVAIL, // Space is not available
 WM_AD_REPAIR, // A product reset has occurred since last

// recompaction process. The application has
// to call wm_adRecompactInit to continue
// this process.

} wm_adSpaceState_e;

3.14.14 The wm_adFormat Function

The wm_adFormat function destroys the whole Application & Data space stored data.
The function has to be called a first time with the WM_AD_FORMAT_INIT mode, to
initialize the format process. Then it has to be called regularly (Eg. on a cyclic timer
reception) with the WM_AD_FORMAT_CONTINUE mode, until the complete format process is
completed.

Its prototype is:

s32 wm_adFormat (wm_adFormatMode_e Mode,
 u32 * FormatHandle,
 u32 * FormatProgress);

3.14.14.1 Parameters

Mode
Required operation mode, using the following type:

typedef enum
{
 WM_AD_FORMAT_INIT, // Initialize the format process
 WM_AD_FORMAT_CONTINUE, // Continue running the format process
 WM_AD_FORMAT_ABORT // Abort format process

// (need to be re-started later)
} wm_adFormatMode_e;

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 130 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

FormatHandle

Pointer on an u32 integer, modified by the function; the same pointer has to
be used for every function call during the format process.

FormatProgress
Format process progress indicator (as a percentage) updated by the function.
The process is complete when this indicator reaches the 100 value.

3.14.14.2 Returned Values

This function will return OK if successful.
Otherwise, the function will return an error value (cf § 3.14.2).

3.14.15 The wm_adRecompactInit Function

The wm_adRecompactInit function starts the recompaction process. The process
steps are then done by the wm_adRecompact() function.
Its prototype is:

s32 wm_adRecompactInit (void);

Note: When wm_adRecompactInit is called, no other A&D function should be called
(except wm_adRecompact) before recompaction completion. If the recompaction is
interrupted by a product reset, wm_adSpaceState function will return WM_AD_REPAIR
state.

3.14.15.1 Returned Values

This function will return OK if successful.
Otherwise, the function will return an error value (cf § 3.14.2).

3.14.16 The wm_adRecompact Function

The wm_adRecompact function performs a new recompaction step. The recompaction
process has to be initialised by the wm_adRecompactInit() function.
Its prototype is:

s32 wm_adRecompact (void);

3.14.16.1 Returned Values

This function will return the completed percentage if successful. It must be called
until the returned value is 100.
Otherwise, the function will return an error value (cf § 3.14.2).

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 131 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.14.17 The wm_adInstall Function

The wm_adInstall function allows to install the content of the provided cell, if it is a
"dwl" file (a Wavecom Core Software update, an Open AT® application, or an E2P
configuration file).

Its prototype is:

s32 wm_adInstall (wm_adHandle_t * Handle);

3.14.17.1 Parameters

Handle

Handle on the cell to install.

3.14.17.2 Returned Values

This function will reset the product and install the "dwl" file on success.
The InitType parameter of all the Init functions will be set to either
WM_APM_DOWNLOAD_SUCCESS (on install success) or
WM_APM_DOWNLOAD_ERROR (if the ".dwl" file is corrupted).
Otherwise, the function will return an error value (cf § 43.10.2 Returned values
definition).

3.15 [Deprecated] WAP API

The WAP feature has been removed since the Open AT® V3.02 version. The WAP
APIs do not exist anymore in the Basic library.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 132 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.16 GPS API

This API provides a GPS interface to Open AT® applications downloaded on a Q2501
product. This API is only enabled on this product, and only if the GPS device is set in
internal mode (controlled by the Wavecom module, i.e. the AT+WGPSCONF=0,1
mode has to be set; when this parameter value is changed, the product has to be
reset to take the new value into account).

3.16.1 Required Header

This API is defined in wm_gps.h header file.
This file is included by wm_apm.h.

3.16.2 The wm_gpsGetPosition Function

The wm_gpsGetPosition function allows the Open AT® application to retrieve the
current position read from the GPS device.

Its prototype is:

s8 wm_gpsGetPosition (wm_gpsPosition_t * Position);

3.16.2.1 Parameters

Position
GPS position read parameters, based on the type below :
typedef struct
{
 ascii UTC_time [S_UTC_TIME]; // hhmmss.sss
 ascii date [S_DATE]; // ddmmyy
 ascii latitude [S_POSITION]; // ddmm.mmmm
 ascii latitude_Indicator[S_INDICATOR]; // N - S
 ascii longitude [S_POSITION]; // dddmm.mmmm
 ascii longitude_Indicator[S_INDICATOR]; // E - W
 ascii status[S_INDICATOR];
 ascii P_Fix[S_INDICATOR];
 ascii sat_used [S_SAT]; // Satellites used
 ascii HDOP [S_HDOP]; // Horizontal Dilution of Precision
 ascii altitude [S_ALTITUDE]; // MSL Altitude
 ascii altitude_Unit[S_INDICATOR];
 ascii geoid_Sep [S_GEOID_SEP]; // geoid correction
 ascii geoid_Sep_Unit[S_INDICATOR];
 ascii Age_Dif_Cor [S_AGE_DIF_COR]; // Age of Differential

correction
 ascii Dif_Ref_ID [S_DIF_REF_ID]; // Diff Ref station ID
 ascii magneticVariation[S_COURSE]; // magnetic variation: not

available for sirf
technology

} wm_gpsPosition_t;

All fields are ascii zero terminated strings containing GPS information.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 133 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.16.2.2 Returned Values

This function will return ERROR if the current product is not a Q2501 one, or if the
internal mode is not enabled. Otherwise, it will reply OK.

3.16.3 The wm_gpsGetSpeed Function

The wm_gpsGetSpeed function allows the Open AT® application to retrieve the current
speed read from the GPS device.

Its prototype is:

s8 wm_gpsGetSpeed (wm_gpsSpeed_t * Speed);

3.16.3.1 Parameters

Speed
GPS speed read parameters, based on the type below :

typedef struct
{
 ascii course [S_COURSE]; // Degrees from true North
 ascii speed_knots [S_SPEED]; // Speed in knots
 ascii speed_km_p_hour [S_SPEED]; // Speed in km/h
} wm_gpsSpeed_t;

All fields are ascii zero terminated strings containing GPS information.

3.16.3.2 Returned Values

This function will return ERROR if the current product is not a Q2501 one, or if the
internal mode is not enabled. Otherwise, it will reply OK.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 134 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.16.4 The wm_gpsGetSatview Function

The wm_gpsGetSatview function allows the Open AT® application to retrieve the current
satellite view read from the GPS device.

Its prototype is:

s8 wm_gpsGetSatview (wm_gpsSatViewt_t * SatView);

3.16.4.1 Parameters

SatView
GPS satellite view read parameters, based on the type below :

typedef struct
{
 u8 id; // range 1 to 32
 u8 elevation; // maximum 90
 u32 azimuth; // range 0 to 359
 s8 SNR ; // range 0 to 99, -1 when not tracking
} wm_gpsSatellite_t;

All fields are integers containing GPS information about current satellite.

typedef struct
{
 u8 NB_Msg ; // Number of messages
 u8 MSG_Number ; // Message Number
 u8 Sat_view ; // Satellites in view
 wm_gpsSatellite_t sat [NB_SAT_MAX]; // array for informations about

differents satellites
} wm_gpsSatView_t;

The different fields contain information about the current satellite view. Each
satellite information details are contained in the "sat" field.

3.16.4.2 Returned Values

This function will return ERROR if the current product is not a Q2501 one, or if the
internal mode is not enabled. Otherwise, it will reply OK.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 135 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.17 RTC API

3.17.1 Required Header

This API is defined in wm_rtc.h header file.
This file is included by wm_apm.h.

3.17.2 RTC related types

3.17.2.1 The wm_rtcTime_t type

This type is the used structure by the Wavecom Core Software in order to retrieve the
current RTC time. This type is defined below:

typedef struct
{
 u8 Year; // Year (Two digits)
 u8 Month; // Month (1-12)
 u8 Day; // Day of the month (1-31)
 u8 Hour; // Hour (0-23)
 u8 Minute; // Minute (0-59)
 u8 Second; // Second (0-59)
 u16 SecondFracPart; // Second fractional part
} wm_rtcTime_t;

Years are cyclically provided on two digits, without any century information.

Second fractional part step matches to 1/215 (about 30.5 μs), since the most
significant bit is not used.

3.17.2.2 The wm_rtcTimeStamp_t structure

This type may be used in order to perform arithmetic operations on time data; it is
defined below:

typedef struct
{
 u32 TimeStamp; // Seconds elapsed since 1st January 1970
 u16 SecondFracPart; // Second fractional part
} wm_rtcTimeStamp_t;

The timestamp uses the Unix format (seconds elapsed since the 1st January 1970).

Second fractional part step matches to 1/215 (about 30.5 μs), since the most
significant bit is not used.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 136 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.17.3 The wm_rtcGetTime Function

The wm_rtcGetTime function retrieves the current RTC time structure.

Its prototype is:
s32 wm_rtcGetTime (wm_rtcTime_t * TimeStructure);

3.17.3.1 Parameters

TimeStructure
The returned time structure.

3.17.3.2 Return value

• OK on success.
• A negative error value if the provided time structure is set to NULL).

3.17.4 The wm_rtcConvertTime function

This function is able to convert RTC time structure to timestamp structure, and
timestamp structure to RTC time structure.
Its prototype is:

s32 wm_rtcConvertTime (wm_rtcTime_t * TimeStructure,
 wm_rtcTimeStamp_t * TimeStamp,
 wm_rtcConvert_e Conversion);

3.17.4.1 Parameters

TimeStructure:
Input / output RTC time structure

TimeStamp:

Input / output timestamp structure

Conversion:

Conversion mode, using the type below :

typedef enum
{
 WM_RTC_CONVERT_TO_TIMESTAMP,
 WM_RTC_CONVERT_FROM_TIMESTAMP
} wm_rtcConvert_e;

WM_RTC_CONVERT_TO_TIMESTAMP

This mode allows to convert TimeStructure parameter to TimeStamp
one. Since RTC structure years are only available on two digits, real
years will be considered from 1970 to 2069.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 137 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

WM_RTC_CONVERT_FROM_TIMESTAMP

This mode allows to convert TimeStamp parameter to TimeStructure
one. Since RTC structure years are only available on two digits,
timestamps greater or equal to 2O7O year will lead to a conversion
error.

3.17.4.2 Return value

o OK on success.
o ERROR if conversion failed (internal error) or if one parameter value is

incorrect.
o WM_RTC_ERR_OVERFLOW if a "From Timestamp" conversion is required

on a year greater or equal to 2070.

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 138 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.18 DAC API

3.18.1 Required header

This API is defined in wm_dac.h header file.
This file is included by wm_apm.h.

3.18.2 The wm_dacOpen Function

The wm_dacOpen function allows to allocate the DAC block, and to set the initial
value.

3.18.2.1 Prototype

s32 wm_dacOpen (wm_dacChannel_e Channel,
wm_dacParam_t * Param);

3.18.2.2 Parameters

Channel
Identifier of the DAC channel to be opened, using the type below:

typedef enum
{
 WM_DAC_CHANNEL_1,
 WM_DAC_NUMBER_OF_CHANNEL,
 WM_DAC_CHANNEL_PAD = 0x7fffffff
} wm_dacChannel_e;

Channel identifiers depends on the current module type (please refer to the
module Product Technical Specification document for more information):

Module type Channel
identifier

Output DAC PIN
name

Output DAC PIN
number

Q2501 WM_DAC_CHANNEL_1 AUXDAC 31

Param
DAC channel initialization parameters, using the type below:

typedef struct {
 u32 InitialValue;
} wm_dacParam_t;

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 139 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

InitialValue:
Initial value to be written on the DAC just after this one has been opened.
Significant bits and output voltage depends on the module type (please refer
to the module Product Technical Specification document for more
information).

Module type Significant bits Max. output voltage
Q2501 8 less significant bits 2.64 V (for 0xFF value)

3.18.2.3 Returned values

• A positive or null handle on success, to be used with further DAC API
functions calls.

• A negative error value:
o WM_DAC_CHANNEL_NOT_FREE if the required DAC channel has

already been opened.
o WM_DAC_NO_MORE_HANDLE_FREE if there is no more free handles

for the DAC API.
o Generic ERROR code in other cases (bad parameter, no DAC API on

the current module, invalid DAC channel).

3.18.2.4 Notes

The DAC API is only available on the Q2501 module.

3.18.3 The wm_dacWrite Function

This function allows to set the output value of the DAC block.

3.18.3.1 Prototype

s32 wm_dacWrite (s32 Handle,
u32 Value);

3.18.3.2 Parameters

Handle
Handle previously returned by the wm_dacOpen function.

Value
Value to be written on the DAC. Significant bits and output voltage depends
on the module type (please refer to the module Product Technical
Specification document for more information).

Module type Significant bits Max. output voltage
Q2501 8 less significant bits 2.64 V (for 0xFF value)

Basic Development Guide for Open AT® OS v3.13

API

©Confidential Page: 140 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

3.18.3.3 Returned values

• OK on success
• Generic ERROR code in other cases (bad parameter, bad handle).

3.18.4 The wm_dacClose Function

This function closes a previously opened DAC block.

3.18.4.1 Prototype

s32 wm_dacClose (s32 Handle)

3.18.4.2 Parameters

Handle
Handle previously returned by the wm_dacOpen function.

3.18.4.3 Returned values

• OK on success
• Generic ERROR code in other cases (bad handle).

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 141 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

4 Functioning

There are three different functioning modes, depending on the type of application.
They are described in the following paragraphs.

4.1 Standalone External Application

This mode corresponds to the standard operation mode: no Embedded Application is
active.

Embedded Software

Embedded Application

Wavecom Library

Wavecom Module

AT External
Application

Send AT command

Receive response

Serial
Link

2

5

3

4

1

6

Wavecom Core Software

Figure 4: Standalone external application function

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 142 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

The steps are performed in the following sequence:

1) the External Application sends an AT command,
2) the serial link transmits the command to the AT processor function of the

Wavecom Core Software,
3) the AT function processes the command,
4) the AT function sends an AT response to the External Application,
5) this response is sent through the serial link, and
6) the External Application receives the response.

Note:
This mode is also compatible with the mode described in § 4.2, where the AT
function is in charge of dispatching the responses to the appropriate application.

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 143 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

4.2 Embedded Application in Standalone Mode

This mode is based on an Embedded Application driving the GSM product
independently.

User Software

Embedded Application
 wm_atSendCommand()

wm_apmAppliParser()

Wavecom Library

Wavecom Module

AT Serial
Link

25

34

1
6

Wavecom Core Software

Figure 5: Embedded Application in standalone mode function

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 144 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

The steps are performed in the following sequence:

1) The Embedded Application calls the "wm_atSendCommand" function to send an AT

command.
The response parameter is WM_AT_SEND_RSP_TO_EMBEDDED,

2) The Wavecom library calls the appropriate AT function from the Wavecom Core
Software,

3) The AT function processes the command,
4) The AT function sends the AT response to the Embedded Application,
5) This response is dispatched by the Wavecom library which calls the

"wm_apmAppliParser" function of the Embedded Application,
6) The "wm_apmAppliParser" function processes the response (the AT response is a

parameter of the function). The Message type is WM_AT_RESPONSE.

Example: appli.c file of a Standalone Mode Embedded Application

/***/
/* Appli.c - Copyright Wavecom S.A. (c) 2003 */
/***/

#include "wm_types.h"
#include "wm_apm.h"

#define TIMER 01

/**************************/
/* Mandatory Functions */
/**************************/

/***************************************/
/* wm_apmAppliInit */
/* Embedded Application initialisation */
/***************************************/
s32 wm_apmAppliInit (wm_apmInitType_e InitType)
{
 wm_osDebugTrace(1, "Embedded: Appli Init");
 wm_osStartTimer (TIMER, FALSE, WM_S_TO_TICK (2));
 return OK;
}

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 145 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

/**/
/* wm_apmAppliParser */
/* Embedded Application message parser */
/***************************************/
s32 wm_apmAppliParser (wm_apmMsg_t * pMessage)
{
 wm_osDebugTrace (1, "Embedded: Appli Parser");

 switch (pMessage->MsgTyp)
 {
 case WM_OS_TIMER:
 wm_osDebugTrace (1, "WM_OS_TIMER received");
 if (pMessage->Body.OSTimer.Ident == TIMER)
 {
 wm_atSendCommand (4, WM_AT_SEND_RSP_TO_EMBEDDED,
 "AT\r");
 wm_osDebugTrace (1, "Send command \"AT\\r\"");
 }
 break;

 case WM_AT_RESPONSE:
 wm_osDebugTrace (1, "WM_AT_RESPONSE received");
 if (pMessage->Body.ATResponse.Type ==
 WM_AT_SEND_RSP_TO_EMBEDDED)
 {
 wm_osDebugTrace (1, "Response received:");
 wm_osDebugTrace (1, pMessage->Body.ATResponse.StrData);
 }
 break;
 }

 return OK;
}

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 146 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

/**************************/
/* Mandatory Variables */
/**************************/

#define StackSize 1024
u32 Stack [StackSize / 4];

// Tasks table
const wm_apmTask_t wm_apmTask [] =
{
{ StackSize, Stack, wm_apmAppliInit, wm_apmAppliParser },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL }
};

Target Monitoring Tool traces with this example:

Trace CUS 1 Embedded: Appli Init
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_OS_TIMER received
Trace CUS 1 Send command "AT\r"
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_AT_RESPONSE received
Trace CUS 1 Response received:
Trace CUS 1 <CR><LF>OK<CR><LF>

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 147 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

4.3 Cooperative Mode

This mode corresponds to the interaction between an External Application and an
Embedded Application.
Whenever the Embedded Application wants to filter or spy the commands sent by the
External Application, it can use the command pre-parsing mechanism.

Three types of subscription are available. They define the level of information required
by the Embedded Application:

 The Embedded Application does not want to filter or spy the commands sent by

the External Application: this is done using
WM_AT_CMD_PRE_WAVECOM_TREATMENT.

 The Embedded Application wants to filter the AT commands sent by the External
Application: this is done using WM_AT_CMD_PRE_EMBEDDED_TREATMENT.

In this configuration, it is up to the Embedded Application to process or not
the AT command and to send a response to the External Application.

 The Embedded Application wants only to spy the AT commands sent by the
External Application: this is done using WM_AT_CMD_PRE_BROADCAST.

Whenever the Embedded Application wants to filter or spy the responses sent to the
External Application, it can use the response pre-parsing mechanism.

Three types of subscription are available. They define the level of information required
by the Embedded Application:

 The Embedded Application does not want to filter or spy the responses sent to the

External Application: this is done using
WM_AT_RSP_PRE_WAVECOM_TREATMENT.

 The Embedded Application wants to filter the AT responses sent to the External
Application: this is done using WM_AT_RSP_PRE_EMBEDDED_TREATMENT.

In this configuration, it is up to the Embedded Application to send a
response to the External Application.

 The Embedded Application wants only to spy the AT responses sent to the
External Application: this is done using WM_AT_RSP_PRE_BROADCAST.

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 148 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

4.3.1 Command Pre-Parsing Subscription Mechanism:
WM_AT_CMD_PRE_EMBEDDED_TREATMENT

Customer Software

Embedded Application
 wm_atCmdPreParserSubscribe()

wm_apmAppliParser()

Wavecom Library

Wavecom Module

AT Serial
Link

2 7

3 6

1
8

Wavecom Core Software

External
Application

Send AT command

54

Figure 6: WM_AT_CMD_PRE_EMBEDDED_TREATMENT

The steps in a Pre-Parsing subscription are performed in the following sequence:

1) The Embedded Application subscribes to the command pre-parsing service, by

calling the wm_atCmdPreParserSubscribe() function,
2) The Wavecom library calls the appropriate function from the Wavecom Core

Software,
3) The AT function sets the subscription.

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 149 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

The steps in AT command processing are performed in the following sequence:

4) The External Application sends an AT command,
5) The serial link transmits the command to the AT processor function in the

Wavecom Core Software,
6) The AT function does not process the command but transmits it to the Embedded

Application,
7) The command is routed by the Wavecom library which calls the

"wm_apmAppliParser" function of the Embedded Application (the Message type is
WM_AT_CMD_PRE_PARSER),

8) This function processes the command: the parameters of the function include the
AT command and an indication that the command comes from an External
Application.

Example: appli.c file of a WM_AT_CMD_PRE_EMBEDDED_TREATMENT Mode
Embedded Application
Example: appli.c file of a WM_AT_CMD_PRE_EMBEDDED_TREATMENT Mode
Embedded Application

/**/
/* Appli.c - Copyright Wavecom S.A. (c) 2003 */
/**/

#include "wm_types.h"
#include "wm_apm.h"

#define TIMER 01

/**************************/
/* Mandatory Functions */
/**************************/

/*************************************/
/* wm_apmAppliInit */
/* Embedded Application initialisation */
/************************************/
s32 wm_apmAppliInit (wm_apmInitType_e InitType)
{
 wm_osDebugTrace(1, "Embedded: Appli Init");
 wm_atCmdPreParserSubscribe (
 WM_AT_CMD_PRE_EMBEDDED_TREATMENT);
 wm_osStartTimer (TIMER, FALSE, WM_S_TO_TICK (2));
 return OK;
}

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 150 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

/**/
/* wm_apmAppliParser */
/* Embedded Application message parser */
/**/
s32 wm_apmAppliParser (wm_apmMsg_t * pMessage)
{
 wm_osDebugTrace (1, "Embedded: Appli Parser");

 switch (pMessage->MsgTyp)
 {
 case WM_OS_TIMER:
 wm_osDebugTrace (1, "WM_OS_TIMER received");
 break;

 case WM_AT_CMD_PRE_PARSER:
 wm_osDebugTrace (1, "WM_AT_CMD_PRE_PARSER received");
 if (pMessage->Body.ATCmdPreParser.Type ==
 WM_AT_CMD_PRE_EMBEDDED_TREATMENT)
 {
 wm_osDebugTrace (1, "command received:");
 wm_osDebugTrace (1, pMessage->Body.ATCmdPreParser.StrData);

 if (!wm_strncmp (pMessage->Body.ATCmdPreParser.StrData,
 "AT-W", 4))
 {
 /* filter Specific embedded application command */
 wm_osDebugTrace (1, "Specific embedded application command"
);

 /* send response to external application */
 wm_atSendRspExternalApp (10, "\r\n->WOK\r\n");
 }
 else
 {
 /* command must be treated by AT Software */
 wm_osDebugTrace (1, "Wavecom Core Software command");
 wm_atSendCommand (
 pMessage->Body.ATCmdPreParser.StrLength,
 WM_AT_SEND_RSP_TO_EXTERNAL,
 pMessage->Body.ATCmdPreParser.StrData);
 }
 }
 break;
 }

 return OK;
}

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 151 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

/**************************/
/* Mandatory Variables */
/**************************/

#define StackSize 1024
u32 Stack [StackSize / 4];

// Tasks table
const wm_apmTask_t wm_apmTask [] =
{
{ StackSize, Stack, wm_apmAppliInit, wm_apmAppliParser },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL }
};

An AT command log for the external application with this example:

AT
OK
AT-W
->WOK

Target Monitoring Tool traces with this example:

Trace CUS 1 Embedded: Appli Init
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_OS_TIMER received
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_AT_CMD_PRE_PARSER received
Trace CUS 1 command received:
Trace CUS 1 AT<CR>
Trace CUS 1 Wavecom Core Software command
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_AT_CMD_PRE_PARSER received
Trace CUS 1 command received:
Trace CUS 1 AT-W<CR>
Trace CUS 1 Specific embedded application command

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 152 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

4.3.2 Command Pre-Parsing Subscription Process:
WM_AT_CMD_PRE_BROADCAST

Customer Software

Embedded Application
 wm_atCmdPreParserSubscribe()

wm_apmAppliParser()

Wavecom Library

Wavecom Module

AT Serial
Link

2 7

3 6

1
8

Wavecom Core Software

External
Application

Send AT command

54

7’

Figure 7: WM_AT_CMD_PRE_BROADCAST

The steps in a Pre-Parsing subscription are performed in the following sequence:

1) The Embedded Application subscribes to the command pre-parsing service, by

calling the wm_atCmdPreParserSubscribe() function,
2) The Wavecom library calls the appropriate function in the Wavecom Core

Software, and
3) The AT function sets the subscription.

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 153 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

The steps in AT command processing are performed in the following sequence:

4) The External Application sends an AT command,
5) The serial link transmits the command to the AT function of the Wavecom Core

Software,
6) This AT function checks the subscription status of the "external" AT command,
7) This external AT command is dispatched by the Wavecom library which calls the

"wm_apmAppliParser" function of the Embedded Application,
7’) Meanwhile, the AT function processes the command,
8) The "wm_apmAppliParser" function spies the command: the parameters include the

AT command and the indication of whether or not the command is a copy (the
Message type is WM_AT_CMD_PRE_PARSER).

Example: appli.c file of a WM_AT_CMD_PRE_BROADCAST Mode Embedded
Application
Example: appli.c file of a WM_AT_CMD_PRE_BROADCAST Mode Embedded
Application

/**/
/* Appli.c - Copyright Wavecom S.A. (c) 2001 */
/**/

#include "wm_types.h"
#include "wm_apm.h"

#define TIMER 01

/**************************/
/* Mandatory Functions */
/**************************/

/*************************************/
/* wm_apmAppliInit */
/* Embedded Application initialisation */
/************************************/
s32 wm_apmAppliInit (wm_apmInitType_e InitType)
{
 wm_osDebugTrace(1, "Embedded: Appli Init");
 wm_atCmdPreParserSubscribe (WM_AT_CMD_PRE_BROADCAST);
 wm_osStartTimer (TIMER, FALSE, WM_S_TO_TICK (2));
 return OK;
}

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 154 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

/**/
/* wm_apmAppliParser */
/* Embedded Application message parser */
/**/
s32 wm_apmAppliParser (wm_apmMsg_t * pMessage)
{
 wm_osDebugTrace (1, "Embedded: Appli Parser");

 switch (pMessage->MsgTyp)
 {
 case WM_OS_TIMER:
 wm_osDebugTrace (1, "WM_OS_TIMER received");
 break;

 case WM_AT_CMD_PRE_PARSER:
 wm_osDebugTrace (1, "WM_AT_CMD_PRE_PARSER received");
 if (pMessage->Body.ATCmdPreParser.Type ==
 WM_AT_CMD_PRE_BROADCAST)
 {
 /* spy command sent by external application */
 wm_osDebugTrace (1, "command received from external application"
);
 wm_osDebugTrace (1, pMessage->Body.ATCmdPreParser.StrData);
 }
 break;
 }

 return OK;
}

/**************************/
/* Mandatory Variables */
/**************************/

#define StackSize 1024
u32 Stack [StackSize / 4];

// Tasks table
const wm_apmTask_t wm_apmTask [] =
{
{ StackSize, Stack, wm_apmAppliInit, wm_apmAppliParser },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL }
};

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 155 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

AT command log for the external application with this example:

at
OK

Target Monitoring Tool traces with this example:

Trace CUS 1 Embedded: Appli Init
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_OS_TIMER received
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_AT_CMD_PRE_PARSER received
Trace CUS 1 command received from external application
Trace CUS 1 at<CR>

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 156 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

4.3.3 Response Pre-Parsing Subscription Process:
WM_AT_RSP_PRE_EMBEDDED_TREATMENT

Customer Software

Embedded Application
 wm_atRspPreParserSubscribe()

wm_apmAppliParser()

Wavecom Library

Wavecom Module

AT Serial
Link

2 8

3

6

1
9

Wavecom Core Software

External
Application

Send AT command

54

7

Figure 8: WM_AT_RSP_PRE_EMBEDDED_TREATMENT

The steps in a Pre-Parsing subscription are performed in the following sequence:

1) The Embedded Application subscribes to the response pre-parsing facility, by

calling the wm_atRspPreParserSubscribe() function,
2) The Wavecom library calls the appropriate function from the Wavecom Core

Software, and
3) The AT function sets the subscription.

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 157 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

The steps in AT command processing are performed in the following sequence:

4) The External Application sends an AT command,
5) The serial link transmits the command to the AT function of the Wavecom Core

Software,
6) This configuration does not rely on command pre−parsing. The AT function

processes the command,
7) The AT function checks the subscription status of the response and does not send

the response to the External Application. Instead, it sends the response to the
Embedded Application,

8) The response is dispatched by the Wavecom library which calls the
"wm_apmAppliParser" function of the Embedded Application (the Message type is
WM_AT_RSP_PRE_PARSER),

9) This function processes the response (the parameters of the function include an
indication of the response filtering).

Example: appli.c file of a WM_AT_RSP_PRE_EMBEDDED_TREATMENT Mode
Embedded Application

/**/
/* Appli.c - Copyright Wavecom S.A. (c) 2001 */
/**/

#include "wm_types.h"
#include "wm_apm.h"
#define TIMER 01

/**************************/
/* Mandatory Functions */
/**************************/
/*************************************/
/* wm_apmAppliInit */
/* Embedded Application initialisation */
/************************************/
s32 wm_apmAppliInit (wm_apmInitType_e InitType)
{
 wm_osDebugTrace(1, "Embedded: Appli Init");
 wm_atRspPreParserSubscribe (WM_AT_RSP_PRE_EMBEDDED_TREATMENT);
 wm_osStartTimer (TIMER, FALSE, WM_S_TO_TICK (2));
 return OK;
}

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 158 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

/**/
/* wm_apmAppliParser */
/* Embedded Application message parser */
/**/
s32 wm_apmAppliParser (wm_apmMsg_t * pMessage)
{
 wm_osDebugTrace (1, "Embedded: Appli Parser");

 switch (pMessage->MsgTyp)
 {
 case WM_OS_TIMER:
 wm_osDebugTrace (1, "WM_OS_TIMER received");
 break;

 case WM_AT_RSP_PRE_PARSER:
 wm_osDebugTrace (1, "WM_AT_RSP_PRE_PARSER received");
 wm_osDebugTrace (1, pMessage->Body.ATRspPreParser.StrData);

 if (pMessage->Body.ATRspPreParser.Type ==
 WM_AT_RSP_PRE_EMBEDDED_TREATMENT)
 {
 if (!wm_strncmp ("\r\nOK\r\n",
 pMessage->Body.ATRspPreParser.StrData, 6))
 {
 wm_osDebugTrace (1, "OK response modified for external
 application");
 wm_atSendRspExternalApp (10, "\r\n->WOK\r\n");
 }
 else
 {
 wm_osDebugTrace (1, "no modified response");
 wm_atSendRspExternalApp (
 pMessage->Body.ATRspPreParser.StrLength,
 pMessage->Body.ATRspPreParser.StrData);
 }
 }
 break;
 }

 return OK;
}

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 159 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

/**************************/
/* Mandatory Variables */
/**************************/

#define StackSize 1024
u32 Stack [StackSize / 4];

// Tasks table
const wm_apmTask_t wm_apmTask [] =
{
{ StackSize, Stack, wm_apmAppliInit, wm_apmAppliParser },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL }
};

AT commands log for the external application with this example:

at
->WOK
at+wopen?
+WOPEN: 1
->WOK

Target Monitoring Tool traces with this example:

Trace CUS 1 Embedded: Appli Init
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_OS_TIMER received
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_AT_RSP_PRE_PARSER received
Trace CUS 1 <CR><LF>OK<CR><LF>
Trace CUS 1 OK response modified for external application
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_AT_RSP_PRE_PARSER received
Trace CUS 1 <CR><LF>+WOPEN: 1<CR><LF>
Trace CUS 1 no modified response
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_AT_RSP_PRE_PARSER received
Trace CUS 1 <CR><LF>OK<CR><LF>
Trace CUS 1 OK response modified for external application

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 160 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

4.3.4 Response Pre-Parsing Subscription Process:
WM_AT_RSP_PRE_BROADCAST

Customer Software

Embedded Application
 wm_atRspPreParserSubscribe()

wm_apmAppliParser()

Wavecom Library

Wavecom Module

AT Serial
Link

2 8

3

7

1
9

Wavecom Core Software

External
Application

Send AT command

Receive AT response

8’9’

654

Figure 9: WM_AT_RSP_PRE_BROADCAST

The steps in a Pre-Parsing subscription are performed in the following sequence:

1) The Embedded Application subscribes to the response pre-parsing facility, by

calling the wm_atRspPreParserSubscribe() function,
2) The Wavecom library calls the appropriate function in the Wavecom Core

Software, and
3) The AT function sets the subscription.

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 161 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

The steps in AT command processing are performed in the following sequence:

4) The External Application sends an AT command,
5) The serial link transmits the command to the AT function of the Wavecom Core

Software,
6) This configuration does not rely on command pre−parsing. The AT function

processes the command,
7) The AT function checks the subscription status of the response and sends it to

both the External Application and the Embedded Application,
8) The response is dispatched by the Wavecom library, which calls the

"wm_apmAppliParser" function of the Embedded Application (the Message type is
WM_AT_RSP_PRE_PARSER),

9) This function processes the response (the parameters of the function include a
broadcast response indication),

8’) This response is sent through the serial link,
9’) The External Application receives the response.

Example: appli.c file of a WM_AT_RSP_PRE_BROADCAST Mode Embedded
Application

/**/
/* Appli.c - Copyright Wavecom S.A. (c) 2001 */
/**/

#include "wm_types.h"
#include "wm_apm.h"
#define TIMER 01

/**************************/
/* Mandatory Functions */
/**************************/

/*************************************/
/* wm_apmAppliInit */
/* Embedded Application initialisation */
/************************************/
s32 wm_apmAppliInit (wm_apmInitType_e InitType)
{
 wm_osDebugTrace(1, "Embedded: Appli Init");
 wm_atRspPreParserSubscribe (WM_AT_RSP_PRE_BROADCAST);
 wm_osStartTimer (TIMER, FALSE, WM_S_TO_TICK (2));
 return OK;
}

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 162 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

/**/
/* wm_apmAppliParser */
/* Embedded Application message parser */
/**/
s32 wm_apmAppliParser (wm_apmMsg_t * pMessage)
{
 wm_osDebugTrace (1, "Embedded: Appli Parser");

 switch (pMessage->MsgTyp)
 {
 case WM_OS_TIMER:
 wm_osDebugTrace (1, "WM_OS_TIMER received");
 break;

 case WM_AT_RSP_PRE_PARSER:
 wm_osDebugTrace (1, "WM_AT_RSP_PRE_PARSER received");

 if (pMessage->Body.ATRspPreParser.Type ==
 WM_AT_RSP_PRE_BROADCAST)
 {
 /* spy response sent to external application */
 wm_osDebugTrace (1, "response sent to external application");
 wm_osDebugTrace (1,pMessage->Body.ATRspPreParser.StrData);
 }
 break;
 }

 return OK;
}

/**************************/
/* Mandatory Variables */
/**************************/

#define StackSize 1024
u32 Stack [StackSize / 4];

// Tasks table
const wm_apmTask_t wm_apmTask [] =
{
{ StackSize, Stack, wm_apmAppliInit, wm_apmAppliParser },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL }
};

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 163 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

AT command log for the external application with this example:

at
OK

Target Monitoring Tool traces with this example:

Trace CUS 1 Embedded: Appli Init
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_OS_TIMER received
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_AT_RSP_PRE_PARSER received
Trace CUS 1 response sent to external application
Trace CUS 1 <CR><LF>OK<CR><LF>

4.3.5 Example: Embedded Application Using the Different Functioning
Modes

/**/
/* Appli.c - Copyright Wavecom S.A. (c) 2001 */
/**/

#include "wm_types.h"
#include "wm_apm.h"

#define TIMER 01

typedef enum
{
 STANDALONE,
 CMD_PREPARSING_EMBEDDED,
 CMD_PREPARSING_BROADCAST,
 RSP_PREPARSING_EMBEDDED,
 RSP_PREPARSING_BROADCAST,
} wm_AtMode_e;

/**************************/
/* Global Variables */
/**************************/

wm_AtMode_e AtMode = STANDALONE;

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 164 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

/**************************/
/* Global Function */
/**************************/

void AtAutomate(state)
{
 switch(state)
 {
 case STANDALONE:
 wm_osDebugTrace(1, "STANDALONE");
 wm_atCmdPreParserSubscribe(WM_AT_CMD_PRE_WAVECOM_TREATMENT);
 wm_atRspPreParserSubscribe(WM_AT_RSP_PRE_WAVECOM_TREATMENT);
 wm_atSendRspExternalApp(16,"STANDALONE mode");
 wm_atSendRspExternalApp(18,"send an at command");
 break;

 case CMD_PREPARSING_EMBEDDED:
 wm_osDebugTrace(1, "CMD_PREPARSING_EMBEDDED");
 wm_atCmdPreParserSubscribe(WM_AT_CMD_PRE_EMBEDDED_TREATMENT);
 wm_atRspPreParserSubscribe(WM_AT_RSP_PRE_WAVECOM_TREATMENT);
 wm_atSendRspExternalApp(29,"CMD_PREPARSING_EMBEDDED mode");
 wm_atSendRspExternalApp(18,"send an at command");
 break;

 case CMD_PREPARSING_BROADCAST:
 wm_osDebugTrace(1, "CMD_PREPARSING_BROADCAST");
 wm_atCmdPreParserSubscribe(WM_AT_CMD_PRE_BROADCAST);
 wm_atRspPreParserSubscribe(WM_AT_RSP_PRE_WAVECOM_TREATMENT);
 wm_atSendRspExternalApp(30,"CMD_PREPARSING_BROADCAST mode");
 wm_atSendRspExternalApp(18,"send an at command");
 break;

 case RSP_PREPARSING_EMBEDDED:
 wm_osDebugTrace(1, "RSP_PREPARSING_EMBEDDED");
 wm_atCmdPreParserSubscribe(WM_AT_CMD_PRE_WAVECOM_TREATMENT);
 wm_atRspPreParserSubscribe(WM_AT_RSP_PRE_EMBEDDED_TREATMENT);
 wm_atSendRspExternalApp(29,"RSP_PREPARSING_EMBEDDED mode");
 wm_atSendRspExternalApp(18,"send an at command");
 break;

 case RSP_PREPARSING_BROADCAST:
 wm_osDebugTrace(1, "RSP_PREPARSING_BROADCAST");
 wm_atCmdPreParserSubscribe(WM_AT_CMD_PRE_WAVECOM_TREATMENT);
 wm_atRspPreParserSubscribe(WM_AT_RSP_PRE_BROADCAST);
 wm_atSendRspExternalApp(30,"RSP_PREPARSING_BROADCAST mode");
 wm_atSendRspExternalApp(18,"send an at command");
 break;

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 165 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

 default:
 wm_osDebugTrace(1, "mode unexpected");
 break;
 }

/**************************/
/* Mandatory Functions */
/**************************/

/*************************************/
/* wm_apmAppliInit */
/* Embedded Application initialisation */
/************************************/
s32 wm_apmAppliInit (wm_apmInitType_e InitType)
{
 wm_osDebugTrace(1, "Embedded: Appli Init");
 wm_osStartTimer (TIMER, FALSE, WM_S_TO_TICK (2));
 return OK;
}

/**/
/* wm_apmAppliParser */
/* Embedded Application message parser */
/**/
s32 wm_apmAppliParser (wm_apmMsg_t * pMessage)
{
 wm_osDebugTrace (1, "Embedded: Appli Parser");

 switch (pMessage->MsgTyp)
 {
 case WM_OS_TIMER:
 wm_osDebugTrace (1, "WM_OS_TIMER received");
 AtAutomate(AtMode);
 if (AtMode!=RSP_PREPARSING_BROADCAST)
 {
 AtMode++;
 wm_osStartTimer (TIMER, FALSE, WM_S_TO_TICK(10));
 }
 break;

 case WM_AT_RESPONSE:
 wm_atSendRspExternalApp(33, "message WM_AT_RESPONSE
 received:");
 wm_strncpy(strReceived, pMessage->Body.ATResponse.StrData,
 pMessage->Body.ATResponse.StrLength);
 strReceived[pMessage->Body.ATResponse.StrLength] = '\0';
 wm_atSendRspExternalApp(pMessage->Body.ATResponse.StrLength+1,
 strReceived);
 break;

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 166 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

 case WM_AT_CMD_PRE_PARSER:
 wm_atSendRspExternalApp(39, "message WM_AT_CMD_PRE_PARSER
 received:");
 wm_strncpy(strReceived, pMessage->Body.ATCmdPreParser.StrData,
 pMessage->Body.ATCmdPreParser.StrLength);
 strReceived[pMessage->Body.ATCmdPreParser.StrLength] = '\0';
 wm_atSendRspExternalApp(pMessage->Body.ATResponse.StrLength+1,
 strReceived);
 break;

 case WM_AT_RSP_PRE_PARSER:
 wm_atSendRspExternalApp(39, "message WM_AT_RSP_PRE_PARSER
 received:");
 wm_strncpy(strReceived, pMessage->Body.ATRspPreParser.StrData,
 pMessage->Body.ATRspPreParser.StrLength);
 strReceived[pMessage->Body.ATRspPreParser.StrLength] = '\0';
 wm_atSendRspExternalApp(pMessage->Body.ATResponse.StrLength +
 1, strReceived);
 break;
 }

 return TRUE;
}

/**************************/
/* Mandatory Variables */
/**************************/

#define StackSize 1024
u32 Stack [StackSize / 4];

// Tasks table
const wm_apmTask_t wm_apmTask [] =
{
{ StackSize, Stack, wm_apmAppliInit, wm_apmAppliParser },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL }
};

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 167 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

AT command log for the external application with this example:
STANDALONE mode
at no interaction between external
OK and embedded application

CMD_PREPARSING_EMBEDDED mode
send an at command
at command sent to embedded application
message WM_AT_CMD_PRE_PARSER received:
at and not to Wavecom AT Software

CMD_PREPARSING_BROADCAST mode
send an at command
at command sent to both
OK response of Wavecom AT Software
message WM_AT_CMD_PRE_PARSER received:
at command received by embedded application

RSP_PREPARSING_EMBEDDED mode
send an at command
at command sent to Wavecom AT Software
message WM_AT_RSP_PRE_PARSER received:
OK response sent to embedded application

RSP_PREPARSING_BROADCAST mode
send an at command
at command sent to Wavecom AT Software
OK response sent to external application
message WM_AT_RSP_PRE_PARSER received:
OK response sent to embedded application

Basic Development Guide for Open AT® OS v3.13

Functioning

©Confidential Page: 168 / 168
This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00002 - 016 May 3, 2007

Target Monitoring Tool traces with this example:

Trace CUS 1 Embedded: Appli Init
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_OS_TIMER received
Trace CUS 1 STANDALONE
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_OS_TIMER received
Trace CUS 1 CMD_PREPARSING_EMBEDDED
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_OS_TIMER received
Trace CUS 1 CMD_PREPARSING_BROADCAST
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_OS_TIMER received
Trace CUS 1 RSP_PREPARSING_EMBEDDED
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 Embedded: Appli Parser
Trace CUS 1 WM_OS_TIMER received
Trace CUS 1 RSP_PREPARSING_BROADCAST
Trace CUS 1 Embedded: Appli Parser

WAVECOM S.A. - 3 esplanade du Foncet - 92442 Issy-les-Moulineaux Cedex - France - Tel: +33(0)1 46 29 08 00 - Fax: +33(0)1 46 29 08 08
Wavecom, Inc. - 4810 Eastgate Mall - Second Floor - San Diego, CA 92121 - USA - Tel: +1 858 362 0101 - Fax: +1 858 558 5485
WAVECOM Asia Pacific Ltd. - Unit 201-207, 2nd Floor, Bio-Informatics Centre – No.2 Science Park West Avenue - Hong Kong Science Park, Shatin

- New Territories, Hong Kong

	Basic Development Guide for Open AT® OS v3.13
	Trademarks
	Copyright
	Overview
	Document History
	Table of Contents
	List of Figures
	Introduction
	References
	Glossary
	Abbreviations

	Description
	Software Architecture
	Software Organization
	Software Supplied by Wavecom

	Minimum Embedded Application Code
	Open AT®Notes on Memory Management
	Known Limitations
	Command Pre-Parsing Limitation
	Missing Unsolicited Messages in Remote Application

	Minimum Embedded Application Code
	Security
	Software Security
	Hardware Security

	API
	Data Types
	Mandatory Functions
	Required Header
	Task identifiers
	Task table
	Stack Initialization
	The Init Functions
	The Parser Functions

	AT Command API
	Required Header
	The wm_atSendCommand Function
	The wm_atSendCommandExt Function
	The wm_atUnsolicitedSubscription Function
	The wm_atIntermediateSubscription Function
	The wm_atCmdPreParserSubscribe Function
	The wm_atRspPreParserSubscribe Function
	The wm_atSendRspExternalApp Function
	The wm_atSendRspExternalAppExt Function
	The wm_atSendUnsolicitedExternalApp Function
	The wm_atSendUnsolicitedExternalAppExt Function
	The wm_atSendIntermediateExternalApp Function
	The wm_atSendIntermediateExternalAppExt Function

	Debug API
	Required Header
	The wm_osDebugTrace Function
	The wm_osDebugFatalError Function
	The wm_osDebugEraseAllBacktraces Function
	The wm_osDebugInitBacktracesAnalysis Function
	The wm_osDebugRetrieveBacktrace Function

	Memory API (OS API abstract)
	Required Header
	The wm_osStartTimer Function
	The wm_osStopTimer Function
	The wm_osStartTickTimer Function
	The wm_osStopTickTimer Function
	Important Note on Data Flash Management
	The wm_osWriteFlashData Function
	The wm_osReadFlashData Function
	The wm_osGetLenFlashData Function
	The wm_osDeleteFlashData Function
	The wm_osGetAllowedMemoryFlashData Function
	The wm_osGetFreeMemoryFlashData Function
	The wm_osGetUsedMemoryFlashData Function
	The wm_osDeleteAllFlashData Function
	The wm_osDeleteRangeFlashData Function
	The wm_osGetHeapMemory Function
	The wm_osReleaseHeapMemory Function
	The wm_osGetRamInfo Function
	The wm_osSuspend function
	The wm_osGetTask Function
	The wm_osSendMsg Function
	Example: Managing Data Flash Objects
	Example: RAM management

	Flow Control Manager API
	Required Header
	The wm_fcmFlow_e type
	The wm_fcmIsAvailable Function
	The wm_fcmOpen Function
	The wm_fcmClose Function
	The wm_fcmSubmitData Function
	Receive Data Blocks
	The wm_fcmCreditToRelease Function
	The wm_fcmQuery Function

	Input Output API
	Required Header
	AT/FCM Ports related functions
	GPIO API

	GPRS API
	GPRS Overview
	The wm_gprsAuthentification function
	The wm_gprsIPCPInformations function
	The wm_gprsOpen function
	The wm_gprsClose function

	BUS API
	Required Header
	Returned values definition
	The wm_busOpen Function
	The wm_busClose Function
	The wm_busWrite Function
	The wm_busRead Function
	Error codes values

	Scratch Memory API
	Required Header
	Returned values definition

	Lists management API
	Required Header
	Types definition
	The wm_lstCreate Function
	The wm_lstDestroy Function
	The wm_lstClear Function
	The wm_lstGetCount Function
	The wm_lstAddItem Function
	The wm_lstInsertItem Function
	The wm_lstGetItem Function
	The wm_lstDeleteItem Function
	The wm_lstFindItem Function
	The wm_lstFindAllItem Function
	The wm_lstFindNextItem Function
	The wm_lstResetItem Function

	Sound API
	Required header
	The wm_sndTonePlay Function
	The wm_sndTonePlayExt Function
	The wm_sndToneStop Function
	The wm_sndDtmfPlay Function
	The wm_sndDtmfStop Function
	The wm_sndMelodyPlay Function
	The wm_sndMelodyStop Function

	Standard Library
	Required Header
	Standard C function set
	String processing function set

	Application & Data storage API
	Required Header
	Returned values definition
	The wm_adAllocate Function
	The wm_adRetrieve Function
	The wm_adFindInit Function
	The wm_adFindNext Function
	The wm_adWrite Function
	The wm_adFinalise Function
	The wm_adResume Function
	The wm_adInfo Function
	The wm_adDelete Function
	The wm_adStats Function
	The wm_adSpaceState Function
	The wm_adFormat Function
	The wm_adRecompactInit Function
	The wm_adRecompact Function
	The wm_adInstall Function

	[Deprecated] WAP API
	GPS API
	Required Header
	The wm_gpsGetPosition Function
	The wm_gpsGetSpeed Function
	The wm_gpsGetSatview Function

	RTC API
	Required Header
	RTC related types
	The wm_rtcGetTime Function
	The wm_rtcConvertTime function

	DAC API
	Required header
	The wm_dacOpen Function
	The wm_dacWrite Function
	The wm_dacClose Function

	Functioning
	Standalone External Application
	Embedded Application in Standalone Mode
	Cooperative Mode
	Command Pre-Parsing Subscription Mechanism: WM_AT_CMD_PRE_EMBEDDED_TREATMENT
	Command Pre-Parsing Subscription Process: WM_AT_CMD_PRE_BROADCAST
	Response Pre-Parsing Subscription Process: WM_AT_RSP_PRE_EMBEDDED_TREATMENT
	Response Pre-Parsing Subscription Process: WM_AT_RSP_PRE_BROADCAST
	Example: Embedded Application Using the Different Functioning Modes

