
ADL User Guide for Open AT®

 OS v3.13

Revision: 011
 Date: May 2007

©Confidential Page: 1 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

ADL User Guide for Open AT®
OS v3.13

Reference: WM_ASW_OAT_UGD_00006

Date: May 3, 2007

Revision: 011

ADL User Guide for Open AT® OS v3.13

©Confidential Page: 2 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Document History

Index Date Versions
001 06/01/03 Created
002 04/06/03 Updates for Open AT® 2.10
003 29/01/04 Updates for Open AT® 2.10a (Q2400 module integration)
004 21/10/04 Updates for Open AT® 3.0
005 11/01/05 Updates for Open AT® 3.01
006 30th May2005 Updates for Open AT® 3.02
007 13/06/05 Updates for Open AT® 3.10
008 October, 2006 Updates for Open AT® 3.12
009 November 6, 2006 Update
010 February 23, 2007 Update
011 May 3, 2007 Small Updates

ADL User Guide for Open AT® OS v3.13

©Confidential Page: 3 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Trademarks

®, WAVECOM®, Wireless CPU®, Wireless Microprocessor, Open AT® and certain
other trademarks and logos appearing on this document, are filed or registered
trademarks of Wavecom S.A. in France or in other countries. All other company
and/or product names mentioned may be filed or registered trademarks of their
respective owners.

Copyright

This manual is copyrighted by WAVECOM with all rights reserved. No part of this
manual may be reproduced in any form without the prior written permission of
WAVECOM.

No patent liability is assumed with respect to the use of the information contained
herein.

ADL User Guide for Open AT® OS v3.13

©Confidential Page: 4 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Overview

This user guide describes the Application Development Layer (ADL).
The aim of the Application Development Layer is to ease the development of Open
AT® embedded applications. It applies to revision Open AT® OS v3.13 and higher
(until the next version of this document).

ADL User Guide for Open AT® OS v3.13

©Confidential Page: 5 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Table of Contents

1 INTRODUCTION ... 11
1.1 Important remarks ..11
1.2 References..11
1.3 Glossary ...11
1.4 Abbreviations ...12

2 DESCRIPTION... 13

2.1 Software Architecture...13
2.2 Minimum Embedded Application Code...14
2.3 Imported APIs from Open AT® library..15
2.4 ADL limitations ...15
2.5 UART 2 and GPIOs shared resources..15
2.6 Q2501 product external battery charging mechanism GPIO shared resource16
2.7 SIM Level Shifter and GPO shared resources ..16
2.8 Open AT® Memory resources..16
2.9 Defined compilation flags ...17
2.10 Inner AT commands configuration..18
2.11 Open AT® specific AT Commands...19

2.11.1 AT+WDWL Command ..19
2.11.2 AT+WOPEN Command...19

3 API ... 20
3.1 Commands...20

3.1.1 Required Header File ...20
3.1.2 Unsolicited Responses ..20
3.1.3 Responses ..22
3.1.4 Incoming AT commands...25
3.1.5 Run AT commands ...29

3.2 Timers ..36
3.2.1 Required Header Files ...36
3.2.2 The adl_tmrSubscribe function..36
3.2.3 The adl_tmrUnSubscribe function ...37
3.2.4 Example..38

3.3 Memory Service..39
3.3.1 Required Header File ...39

ADL User Guide for Open AT® OS v3.13

©Confidential Page: 6 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.3.2 The adl_memGetType function [DEPRECATED]...39
3.3.3 The adl_memGetInfo function ...40
3.3.4 The adl_memGet function ...41
3.3.5 The adl_memRelease function...42
3.3.1 Example..42

3.4 Debug traces ..43
3.4.1 Required Header File ...43
3.4.2 Debug configuration ...43
3.4.3 Full Debug configuration...44
3.4.4 Release configuration..45

3.5 Flash ..46
3.5.1 Required Header File ...46
3.5.2 Flash Objects Management ..46
3.5.3 The adl_flhSubscribe function ...47
3.5.4 The adl_flhExist function ...48
3.5.5 The adl_flhErase function ..48
3.5.6 The adl_fhWrite function ...49
3.5.7 The adl_flhRead function...49
3.5.8 The adl_flhGetFreeMem function ..50
3.5.9 The adl_flhGetIDCount function ..50
3.5.10 The adl_flhGetUsedSize function...51

3.6 FCM Service ...52
3.6.1 Required Header File ...53
3.6.2 The adl_fcmIsAvailable function..54
3.6.3 The adl_fcmSubscribe function ...54
3.6.4 The adl_fcmUnsubscribe function ...58
3.6.5 The adl_fcmReleaseCredits function..58
3.6.6 The adl_fcmSwitchV24State function ...59
3.6.7 The adl_fcmSendData function ...59
3.6.8 The adl_fcmSendDataExt function ..61
3.6.9 The adl_fcmGetStatus function ...62

3.7 GPIO Service...63
3.7.1 Required Header File ...63
3.7.2 The adl_ioSubscribe function ..63
3.7.3 The adl_ioUnsubscribe function ..67
3.7.4 The adl_ioRead function..68
3.7.5 The adl_ioWrite function ...68
3.7.6 The adl_io GetProductType function..69

3.8 Bus Service...70
3.8.1 Required Header File ...70
3.8.2 The adl_busSubscribe function ...70
3.8.3 The adl_busUnsubscribe function ...76
3.8.4 The adl_busRead function...77
3.8.5 The adl_busWrite function ..78

3.9 Errors management ..81
3.9.1 Required Header File ...81
3.9.2 The adl_errSubscribe function...81
3.9.3 The adl_errUnsubscribe function...82

ADL User Guide for Open AT® OS v3.13

©Confidential Page: 7 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.9.4 The adl_errHalt function..83
3.9.5 The adl_errEraseAllBacktraces function...83
3.9.6 The adl_errStartBacktraceAnalysis function ..84
3.9.7 The adl_errGetAnalysisState function..84
3.9.8 The adl_errRetrieveNextBacktrace function ...84

3.10 SIM Service ...86
3.10.1 Required Header File ...86
3.10.2 The adl_simSubscribe function ...86
3.10.3 The adl_simUnsubscribe function ...87
3.10.4 The adl_simGetState function ...87

3.11 SMS Service ...88
3.11.1 Required Header File ...88
3.11.2 The adl_smsSubscribe function...88
3.11.3 The adl_smsSend function ..90
3.11.4 The adl_smsUnsubscribe function ..91

3.12 Call Service ...92
3.12.1 Required Header File ...92
3.12.2 The adl_callSubscribe function..92
3.12.3 The adl_callSetup function ..95
3.12.4 The adl_callSetupExt function ...95
3.12.5 The adl_callHangup function...96
3.12.6 The adl_callHangupExt function..96
3.12.7 The adl_callAnswer function ...96
3.12.8 The adl_callAnswerExt function ..96
3.12.9 The adl_callUnsubscribe function..97

3.13 GPRS Service..98
3.13.1 Required Header File ...98
3.13.2 The adl_gprsSubscribe function ..98
3.13.3 The adl_gprsSetup function ..101
3.13.4 The adl_gprsSetupExt function ...101
3.13.5 The adl_gprsAct function ..102
3.13.6 The adl_gprsActExt function ...103
3.13.7 The adl_gprsDeact function...104
3.13.8 The adl_gprsDeactExt function..104
3.13.9 The adl_gprsGetCidInformations function ...105
3.13.10 The adl_gprsUnsubscribe function ..106
3.13.11 The adl_gprsIsAnIPAddress function...107
3.13.12 Example..108

3.14 Application Safe Mode Service ...110
3.14.1 Required Header File ...110
3.14.2 The adl_safeSubscribe function...110
3.14.3 The adl_safeUnsubscribe function...112
3.14.4 The adl_safeRunCommand function..113

3.15 AT Strings Service ..114
3.15.1 Required Header File ...114
3.15.2 The adl_strID_e type..114
3.15.3 The adl_strGetID function..115
3.15.4 The adl_strGetIDExt function...115

ADL User Guide for Open AT® OS v3.13

©Confidential Page: 8 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.15.5 The adl_strIsTerminalResponse function ...116
3.15.6 The adl_strGetResponse function..116
3.15.7 The adl_strGetResponseExt function...117

3.16 Application & Data storage Service...118
3.16.1 Required Header File ...118
3.16.2 The adl_adSubscribe function ...118
3.16.3 The adl_adUnsubscribe function ...119
3.16.4 The adl_adEventSubscribe function...120
3.16.5 The adl_adEventHdlr_f call-back type ..120
3.16.6 The adl_adEventUnsubscribe function ..122
3.16.7 The adl_adWrite function ..122
3.16.8 The adl_adInfo function...123
3.16.9 The adl_adFinalise function...123
3.16.10 The adl_adDelete function...124
3.16.11 The adl_adInstall function ...124
3.16.12 The adl_adRecompact function ...125
3.16.13 The adl_adGetState function ...126
3.16.14 The adl_adGetCellList function ..127
3.16.15 The adl_adFormat function..127
3.16.16 Example..128

3.17 GPS Service ...132
3.17.1 Required Header File ...132
3.17.2 GPS Data structures ...132
3.17.3 The adl_gpsSubscribe function ...134
3.17.4 The adl_gpsUnsubscribe function ...135
3.17.5 The adl_gpsGetState function ...136
3.17.6 The adl_gpsGetPosition function...136
3.17.7 The adl_gpsGetSpeed function..137
3.17.8 The adl_gpsGetSatView function ..137

3.18 AT/FCM IO Ports Service ..138
3.18.1 Required Header File ...138
3.18.2 AT/FCM IO Ports...138
3.18.3 Ports test macros..139
3.18.4 The adl_portSubscribe function...140
3.18.5 The adl_portUnsubscribe function...141
3.18.6 The adl_portIsAvailable function ...142
3.18.7 The adl_portGetSignalState function ...142
3.18.8 The adl_portStartSignalPolling function ..143
3.18.9 The adl_portStopSignalPolling function...145

3.19 RTC Service ...146
3.19.1 Required Header File ...146
3.19.2 RTC service types ...146
3.19.3 The adl_rtcGetTime function ...148
3.19.4 The adl_rtcConvertTime function...148
3.19.5 The adl_rtcDiffTime function ...149

3.20 DAC Service ...150
3.20.1 Required Header File ...150
3.20.2 The adl_dacSubscribe function ...150

ADL User Guide for Open AT® OS v3.13

©Confidential Page: 9 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.20.3 The adl_dacUnsubscribe function ...151
3.20.4 The adl_dacWrite function ..151
3.20.5 Example..152

4 ERROR CODES ... 153
4.1 General error codes ..153
4.2 Specific FCM service error codes ..153
4.3 Specific flash service error codes ..154
4.4 Specific GPRS service error codes...154
4.5 Specific GPS service error codes...154
4.6 Specific A&D storage service error codes ...154

ADL User Guide for Open AT® OS v3.13

©Confidential Page: 10 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

List of Figures

Figure 1: Software architecture ..13
Figure 2: Open AT RAM mapping, with adl_memInfo_t structure fields names41
Figure 3: Flow Control Manager representation..52
Figure 4: LCD_EN Address Setup chronogram..75

ADL User Guide for Open AT® OS v3.13

Introduction

©Confidential Page: 11 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

1 Introduction

1.1 Important remarks

- It is strongly recommended before reading this document, to read the Open
AT® Basic Development Guide and specifically the Introduction (chapter 1) and
the Description (chapter 2) to have a better overview of what Open AT® is
about.

- The ADL library and the standard embedded Open AT® API layer must not be
used in the same application code. As ADL APIs will encapsulate commands
and trap responses, applications may enter error mode if synchronization is no
longer guaranteed.

1.2 References

I. Open AT® Basic Development Guide for Open AT® OS v3.13
(ref WM_ASW_OAT_UGD_002 revision 15).

1.3 Glossary

Application Mandatory API Mandatory software interfaces to be used by the
Embedded Application.

AT commands Set of standard modem commands.

AT function Software that processes the AT commands and
AT subscriptions.

Embedded API layer Software developed by Wavecom, containing the
Open AT® APIs (Application Mandatory API, AT
Command Embedded API, OS API, Standard API,
FCM API, IO API, and BUS API).

Embedded Application User application sources to be compiled and run
on a Wavecom product.

Embedded Core software Software that includes the Embedded
Application and the Wavecom library.

Embedded software User application binary: set of Embedded
Application sources + Wavecom library.

External Application Application external to the Wavecom product
that sends AT commands through the serial link.

IDE Integrated Development Environment

Target Open AT® compatible product supporting an
Embedded Application.

ADL User Guide for Open AT® OS v3.13

Introduction

©Confidential Page: 12 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Target Monitoring Tool Set of utilities used to monitor a Wavecom
product.

Receive command pre-
parsing

Process for intercepting AT responses.

Send command
pre−parsing

Process for intercepting AT commands.

Standard API Standard set of “C” functions.

Wavecom library Library delivered by Wavecom to interface
Embedded Application sources with Wavecom
Core Software functions.

Wavecom Core Software Set of GSM and open functions supplied to the
User.

1.4 Abbreviations

A&D Application & Data

ADL Application Development Layer

API Application Programming Interface

APN Access Point Name

CID Context identifier

CPU Central Processing Unit

DAC Digital Analog Converter

GPRS General Packet Radio Service

GGSN Gateway GPRS Support Node

IP Internet Protocol

IR Infrared

KB Kilobyte

MS Mobile Station

OS Operating System

PDU Protocol Data Unit

PDP Packet Data Protocol

RAM Random-Access Memory

ROM Read-Only Memory

RTK Real-Time Kernel

SDK Software Development Kit

SMA Small Adapter

SMS Short Message Services

WAP Wireless Application Protocol

ADL User Guide for Open AT® OS v3.13

Description

©Confidential Page: 13 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

2 Description

2.1 Software Architecture

The Application Development Layer software library, based on the standard
embedded Open AT® API layer, is included in the Wavecom library since Open AT®
release 2.00 (as defined in section 2.1.1 ”Software Organization” of the Basic
Development Guide).

The aim of the ADL is to provide a high level interface to the Open AT® software
developer. The ADL supplies the mandatory software skeleton for an embedded
application, for instance the message parser (see 2.2: “Minimum Embedded
Application Code” of Open AT® Basic Development Guide) and some messages states
machines for given complex services (SIM service, SMS service…).

Thus, the Open AT® software developer can concentrate on the contents of his
application. He or she simply has to write the callback functions associated to each
service he or she wants to use.

Therefore the software supplied by Wavecom contains the items listed below:

• ADL software library wmadl.lib,
• A set of header files (.h) defining the ADL API functions,
• Source code samples,

It relies on the following software architecture:

Embedded Core Software (1 binary file)

Embedded API layer

Application
Mandatory API

AT Command
API

Standard
API

OS
API

Embedded Application

FCM API IO
API

BUS API

Wavecom Library ADL Library

Figure 1: Software architecture

ADL User Guide for Open AT® OS v3.13

Description

©Confidential Page: 14 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

2.2 Minimum Embedded Application Code

The minimum embedded application code requested for ADL is the following:

u32 wm_apmCustomStack [256];
/* The value 256 is an example */
const u16 wm_apmCustomStackSize = sizeof(wm_apmCustomStack);

And the entry point to the ADL code is the main function adl_main():

/*main function */
void adl_main(adl_apmInitType_e InitType) {}

The adl_InitType_e is described below:

typedef enum
{

ADL_INIT_POWER_ON, // Normal power on
ADL_INIT_REBOOT_FROM_EXCEPTION, // Reboot after an embedded application

exception
ADL_INIT_DOWNLOAD_SUCCESS, // Reboot after a successful install process

(cf. adl_adInstall API)
ADL_INIT_DOWNLOAD_ERROR// Reboot after an error in install process (cf.

adl_adInstall API)
} adl_InitType_e;

wm_apmCustomStack and wm_apmCustomStackSize are two mandatory variables, used
to define the application call stack size (see §”Minimum Embedded Application
Code” and § ”Mandatory Functions” of Open AT® Basic Development Guide).

For more information about AT command size, downloading, memory limitation or
security, please see § “Description” in the Open AT® Basic Development Guide.

Important note:

Please keep in mind that the adl_main function is NOT like a standard “C” main
function, since the application does not end as soon as adl_main returns. An Open
AT® application is stopped only if the “AT+WOPEN=0” command is used. The
adl_main function is just the application entry point, and has to subscribe to some
services and events to go further. Moreover, since the whole software is protected by
a watchdog mechanism, the application cannot use infinite loops, otherwise the
module will reset after an 8-second security delay.

ADL User Guide for Open AT® OS v3.13

Description

©Confidential Page: 15 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

2.3 Imported APIs from Open AT® library

The following APIs can be used as in Open AT® standard applications. The
required headers are already included in the global ADL header file. The APIs
available in this way are listed below:

• Standard API (defined in wm_stdio.h file) ;
• List API (defined in wm_list.h file) ;
• Sound API (defined in wm_snd.h file) ;

Please refer to Open AT® Basic Development Guide for a description of these APIs.

2.4 ADL limitations

• Concatenated commands (for example “AT+CREG?;+CGMR”) may be used
from the embedded application, but not from external applications while
ADL is running. If subscribed commands are concatenated, command
handlers will not be notified.

• Since ADL uses its own internal process of the +WIND indications, the
current value of the AT+WIND command may not be the same when the
AT+WOPEN command state is 0 or 1.

2.5 UART 2 and GPIOs shared resources

When the product’s second UART is used (started with the AT+WMFM command, or
reserved for the GPS component in internal mode on a Q25X1-based product), some
of the GPIOs are no longer available for the embedded application. The impacted
GPIOs depend on product type, as described below:

WAVECOM Wireless CPU® series Unavailable GPIOs

Q24X6
• GPIO 0 and GPIO 5
• GPO 2
• GPI

Q24X0
• GPIO 0 and GPIO 5
• GPO 2
• GPI

Q25X1
• GPIO 0 and GPIO 5
• GPO 2
• GPI

P32X6 • GPIO 2
• GPI

Q31X6
• GPIO 4 and GPIO 5
• GPO 2
• GPI

P51X6 • GPIO 5
• GPO 0 and GPO 1

ADL User Guide for Open AT® OS v3.13

Description

©Confidential Page: 16 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

2.6 Q2501 product external battery charging mechanism GPIO
shared resource

On the Q2501 product, if the external battery charging mechanism is implemented
(please refer to the AT+WHCNF command documentation), the GPIO 3 is locked on
start-up, and is not available for Open AT® applications.

2.7 SIM Level Shifter and GPO shared resources

If any other feature than "SIM3VONLY" is enabled (please refer to the AT+WFM
command documentation), a GPO (according to the table below, depending on the
module) is locked for the SIM level shifter, and cannot be subscribed by the Open AT®
application.

Wavecom Wireless CPU® series Unavailable GPO

Q24X6 GPO0

Q24X0 GPO0

Q25X1 GPO1

Q24 CLASSIC GPO0

Q24 PLUS GPO0

Q24 AUTO GPO0

Q24 EXTENDED GPO0

2.8 Open AT® Memory resources

The available memory resources for the Open AT® applications depends on the
product memory size:

For products with 32-Mbit flash size and 4Mbit RAM size:
768 Kbytes of ROM (application code)
(configurable; see AT+WOPEN command)

128 Kbytes of RAM

128 Kbytes of Flash Object Data

768 Kbytes of Application & Data Storage Volume
(configurable; see AT+WOPEN command)

ADL User Guide for Open AT® OS v3.13

Description

©Confidential Page: 17 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

For products with 32-Mbit flash size and 16Mbit RAM size:

768 Kbytes of ROM (application code)
(configurable; see AT+WOPEN command)

1664 Kbytes of RAM

128 Kbytes of Flash Object Data

768 Kbytes of Application & Data Storage Volume
(configurable; see AT+WOPEN command)

The total available flash space for both Open AT® application place and A&D storage
place is 1536 Kbytes. This space is shared between the two places.

The maximum A&D storage place size is 1280 Kbytes (1.2 Mbytes: usable for
Wavecom Core Software upgrade capability); the Open AT®application maximum
size, in this case, will be 256 Kbytes.

The minimum A&D storage place size is 0 Kbytes (usable for applications with huge
hard coded data); the Open AT® application maximum size will, in this case, be 1.5
Mbytes.

Warning:
Any A&D size change will lead to this area format process (some seconds on start-
up; all A&D cells data will be erased).

2.9 Defined compilation flags

The Open AT(R) IDE defines some compilation flags, related to the chosen generation
environment. Please refer to the Tools Manual for more information.

ADL User Guide for Open AT® OS v3.13

Description

©Confidential Page: 18 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

2.10 Inner AT commands configuration

For its internal processes, the ADL library needs to set up some AT command
configurations, that differ from the default values. The commands concerned are
listed below:

AT Command Fixed value

AT+CMEE 1

AT+WIND All indications (*)

AT+CREG 2

AT+CGREG 2

AT+CRC 1

AT+CGEREP 2

ATV 1

ATQ 0

(*) All +WIND unsolicited indications are always required by the ADL library. The
“+WIND: 3” indication (product reset) will be enabled only if the external application
required this.

The above fixed values are set-up internally by ADL. This means that all related error
codes (for +CMEE) or unsolicited results are always all available to all Open AT® ADL
applications, without requiring them to be sent (using the corresponding
configuration command).

Important Warning:

User is strongly advised against modifying the current values of these commands
from any Open AT® application. Wavecom would not guarantee ADL correct
processing if these values are modified by any embedded application.

External applications may modify these AT commands’ parameter values without any
constraints. These commands and related unsolicited results behavior is the same
with our without a running ADL application.

If error codes or unsolicited results related to these commands are subscribed and
then forwarded by an ADL application to an external application, these results will be
displayed for the external application only if this latter has required them using the
corresponding AT commands (same behavior as the Wavecom AT firmware without
a running ADL application).

When ATQ1 mode is running, though terminal responses are not sent to the external
application, they are always received from the firmware in the embedded application.

ADL User Guide for Open AT® OS v3.13

Description

©Confidential Page: 19 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

2.11 Open AT® specific AT Commands

See document WM_ASW_OAT_UGD_00044, AT Commands Interface Guide for
Open AT® Firmware v6.57c.

2.11.1 AT+WDWL Command

The AT+WDWL command is usable to download .dwl files trough the serial link,
using the 1K Xmodem protocol.

Dwl files may be Wavecom Core software updates, Open AT® application binaries, or
E2P configuration files.

By default this command is not pre-parsed (it cannot be filtered by the Open AT®
application), except if the Application Safe Mode service is used.

Note:

The AT+WDWL command is described in the document [Ref II].

2.11.2 AT+WOPEN Command

The AT+WOPEN command is used to control Open AT® applications mode &
parameters.

Parameters:

0 Stop the application (the application will be stopped on all product
resets)

1 Start the application (the application will be started on all product
resets)

2 Get the Open AT® libraries versions

3 Erase the objects flash of the Open AT® Embedded Application
(allowed only if the application is stopped)

4 Erase the Open AT® Embedded Application

(allowed only if the application is stopped)

5 Suspend the Open AT® application, until the AT+WOPENRES
command is used, or an hardware interruption occurs

6 Configures the Application & Data storage place and Open AT®
application place sizes.

Note:

Refer to the document [Ref II] for more information about this command

By default this command is not pre-parsed (it cannot be filtered by the Open AT®
application), except if the Application Safe Mode service is used.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 20 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3 API

3.1 Commands

3.1.1 Required Header File

The header file for the functions dealing with AT commands is:
adl_at.h

3.1.2 Unsolicited Responses

An unsolicited response is a string sent by the Wavecom Core Software to
applications in order to provide them with unsolicited event information (ie. not in
response to an AT command).

ADL applications may subscribe to an unsolicited response in order to receive the
event in the handler provided.

Once an application has subscribed to an unsolicited response, it will have to
unsubscribe from it to stop the callback function being executed every time the
matching unsolicited response is sent from the Wavecom Core Software.

Multiple subscriptions: each unsolicited response may be subscribed several times. If
an application subscribes to an unsolicited response with handler 1 and then
subscribes to the same unsolicited response with handler 2, every time the ADL
parser receives this unsolicited response handler 1 and then handler 2 will be
executed.

3.1.2.1 The adl_atUnSoSubscribe function

This function subscribes to a specific unsolicited response with an associated
callback function: when the required unsolicited response is sent from the Wavecom
Core Software, the callback function will be executed.

• Prototype

s16 adl_atUnSoSubscribe (ascii * UnSostr,
adl_atUnSoHandler_t UnSohdl)

• Parameters

UnSostr:
The name (as a string) of the unsolicited response we want to subscribe to.
This parameter can also be set as an adl_rspID_e response ID. Please refer to
§3.15 for more information.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 21 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

UnSohdl:
A handler to the callback function associated to the unsolicited response.

The callback function is defined as follow:

typedef bool (* adl_atUnSoHandler_t) (adl_atUnsolicited_t *)
The argument of the callback function will be a ‘adl_atUnsolicited_t’ structure,
holding the unsolicited response we subscribed to.

The ‘adl_atUnsolicited_t’ structure defined as follow (it is declared in the
adl_at.h header file):

typedef struct
{

adl_strID_e RspID; // Standard response ID
adl_atPort_e Dest; // Unsolicited response destination port
u16 StrLength; /* the length of the string (name) of the

unsolicited response */
ascii StrData[1]; /* a pointer to the string (name) of the

unsolicited response */
} adl_atUnsolicited_t;

The RspID field is the parsed standard response ID if the received response is a
standard response. Refer to §3.15 for more information.
The Dest field is the unsolicited response original destination port. If it is set to
ADL_PORT_NONE, unsolicited response is required to be broadcasted on all
ports.
The return value of the callback function will have to be TRUE if the unsolicited
string is to be sent to the external application (on the port indicated by the Dest
field, if not set to ADL_PORT_NONE, otherwise on all ports), and FALSE
otherwise.
Note that in the case of several handlers associated to the same unsolicited
response, all of them have to return TRUE for the unsolicited response to be
sent to the external application.

• Returned values

OK on success
ERROR if an error occurred.

3.1.2.2 The adl_atUnSoUnSubscribe function

This function unsubscribes from an unsolicited response and its handler.

• Prototype

s16 adl_atUnSoUnSubscribe (ascii * UnSostr,
adl_atUnSoHandler_t UnSohdl)

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 22 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Parameters

UnSostr:
The string of the unsolicited response we want to unsubscribe to.

UnSohdl:
The callback function associated to the unsolicited response.

• Returned values

OK if the unsolicited response was found,
ERROR otherwise.

3.1.2.3 Example

/* callback function */
bool Wind4_Handler(adl_atUnsolicited_t *paras)
{
 /* Unsubscribe to the '+WIND: 4' unsolicited response */
 adl_atUnSoUnSubscribe("+WIND: 4",
 (adl_atUnSoHandler_t)Wind4_Handler);
 adl_atSendResponse(ADL_AT_RSP, "\r\nWe have received a Wind 4\r\n");
 /* We want this response to be sent to the external application,
 * so we return TRUE */
 return TRUE;
}

/*main function */
void adl_main(adl_InitType_e adlInitType)
{
 /* Subscribe to the '+WIND: 4' unsolicited response */
 adl_atUnSoSubscribe("+WIND: 4",
 (adl_atUnSoHandler_t)Wind4_Handler);
}

3.1.3 Responses

3.1.3.1 The adl_atSendResponse function

This function sends the provided text to any external application connected to the
required port, as a response, an unsolicited response or an intermediate response,
according to the requested type.

• Prototype

void adl_atSendResponse (u16 Type,
ascii * String)

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 23 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Parameters

Type:
This parameter is composed of the response type, and the destination port
where to send the response. The type & destination combination has to be
done with the following macro:

ADL_AT_PORT_TYPE (_port, _type)

The _port argument has to be a defined value of the adl_atPort_e type, and
this required port has to be available (cf. the AT/FCM port Service); sending a
response on an Open AT® the GSM or GPRS based port will have no effects).
Note that with the ADL_AT_UNS type value, if the ADL_AT_PORT_TYPE macro is not
used, the unsolicited response will be broadcasted on all currently opened
ports.
If the ADL_AT_PORT_TYPE macro is not used with the ADL_AT_RSP & ADL_AT_INT
types, responses will be by default sent on the UART 1 port. If this port is not
opened, responses will not be displayed.

The _type argument has to be one of the values defined below:

• ADL_AT_RSP:
Terminal response (has to end an incoming AT command).
A destination port has to be specified.
Sending such a response will flush all previously buffered unsolicited
responses on the required port.

• ADL_AT_INT:
Intermediate response (text to display while an incoming AT command is
running).
A destination port has to be specified.
Sending such a response will just display the required text, without
flushing all previously buffered unsolicited responses on the required
port.

• ADL_AT_UNS:
Unsolicited response (text to be displayed out of a currently running
command process).
For the required port (if any) or for each currently opened port (if the
ADL_AT_PORT_TYPE macro is not used), if an AT command is currently
running (ie. the command was sent by the external application, but this
command answer has not been sent back yet), any unsolicited response
will automatically be buffered, until a terminal response is sent on this
port.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 24 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

String:
The text to be sent.
Please note that this is exactly the text string to be displayed on the required
port (i.e. all carriage return & line feed characters (“\r\n” in C language) have to
be sent by the application itself).

3.1.3.2 The adl_atSendStdResponse function

This function sends the provided standard response to the required port, as a
response, an unsolicited response or an intermediate response, according to the
requested type.

• Prototype

void adl_atSendStdResponse (u8 Type,
adl_strID_e RspID)

• Parameters

Type:
Same use as the adl_atSendResponse Type parameter.

RspID:
Standard response ID to be sent (see §3.15 for more information).

3.1.3.3 The adl_atSendStdResponseExt function

This function sends the provided standard response with an argument to the required
port, as a response, an unsolicited response or an intermediate response, according
to the requested type.

• Prototype

void adl_atSendStdResponseExt (u8 Type,
adl_strID_e RspID,
u32 arg)

• Parameters

Type:
Same use as the adl_atSendResponse Type parameter.

RspID:
Standard response ID to be sent (see §3.15 for more information).

arg:
Standard response argument. According to response ID, this argument should
be an u32 integer, or an ascii * string.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 25 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.1.3.4 Additional macros for specific port access

The above Response sending functions may be also used with the macros below,
which provide the additional Port argument: it should avoid heavy code including
each time the ADL_AT_PORT_TYPE macro call.

#define adl_atSendResponsePort(_t,_p,_r)
adl_atSendResponse(ADL_AT_PORT_TYPE(_p,_t),_r)

#define adl_atSendStdResponsePort(_t,_p,_r)

adl_atSendStdResponse(ADL_AT_PORT_TYPE(_p,_t),_r)

#define adl_atSendStdResponseExtPort(_t,_p,_r,_a)

adl_atSendStdResponseExt(ADL_AT_PORT_TYPE(_p,_t),_r,_a)

3.1.4 Incoming AT commands

An ADL application may subscribes to an AT command string, in order to receive
events each time an external application sends this AT command on one of the
module’s ports.

Once the application has subscribed to a command, it will have to unsubscribe to
stop the callback function being executed every time this command is sent by an
external application.

Multiple subscriptions: if an application subscribes to a command with a handler and
subscribes then to the same command with another handler, every time this
command is sent by the external application both handlers will be successively
executed (in the subscription order).

3.1.4.1 The adl_atCmdSubscribe function

This function subscribes to a specific command with an associated callback function,
so that next time the required command is sent by an external application, the
callback function will be executed.

• Prototype

s16 adl_atCmdSubscribe (ascii * Cmdstr,
adl_atCmdHandler_t Cmdhdl,
u16 Options)

• Parameters

Cmdstr:
The string (name) of the command we want to subscribe to. Since this service
only handles AT commands, this string has to begin with the “AT” characters.

Cmdhdl:
The handler of the callback function associated to the command.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 26 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

The callback function is defined as follows:

typedef void (* adl_atCmdHandler_t) (adl_atCmdPreParser_t *)
The argument of the callback function will be an ‘adl_atCmdPreParser_t’
structure holding the command we subscribed to.

The "adl_atCmdPreParser_t" structure is defined as follow (it is declared in the
adl_at.h header file):

typedef struct
{
 u16 Type; // Incoming Command Type
 u8 NbPara; // Parameters number
 adl_atPort_e Port; // Source port
 wm_lst_t ParaList; // Parameters list
 u16 StrLength; // Command string length
 ascii StrData[1]; // Command string
} adl_atCmdPreParser_t;

This structure members are defined below:

o Type:
Incoming command type (will be one of the required ones at subscription
time), detected by the ADL pre-processing.

o NbPara:
Non NULL parameters number (if Type is ADL_CMD_TYPE_PARA), or 0 (with
other type values).

o Port:
Port on which the command was sent by the external application.

o ParaList:
Parameters list (if Type is ADL_CMD_TYPE_PARA). Each parameter may be
accessed by the ADL_GET_PARAM(_p,_i) macro, where _p is the command
handler parameter (adl_atCmdPreParser_t * pointer), and _i is the
parameter index (from 0 to NbPara – 1). NbPara is the number of
arguments received and it is a number between the minimum arguments
number (‘a’) and the maximum arguments number (‘b’) (eg. a=1, b=5
and “AT+MYCMD=0,1,2”, _i can be between 0 and 3 – 1 = 2).
If a string parameter is provided (eg. AT+MYCMD=”string”), the quotes
will be removed from the returned string (eg. ADL_GET_PARAM(para,0) will
return “string” (without quotes) in this case).
If a parameter is not provided (eg. AT+MYCMD=,1), the matching list
element will be set to NULL (eg. ADL_GET_PARAM(para,0) will return NULL
in this case).StrLength, StrData:
Incoming command string length and value.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 27 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Options:
This flag combines with an arithmetic ‘OR’ (‘|’ in C language) the following
information:

- Minimum arguments number ‘a’ stored in the least significant byte (as in
0x000a); only if the ADL_CMD_TYPE_PARA type is required.

- Maximum arguments number ‘b’ stored in the second least significant
byte (as in 0x00b0); only if the ADL_CMD_TYPE_PARA type is required.

- A combination of the available types:

Command type Value Meaning

ADL_CMD_TYPE_PARA 0x0100 ‘AT+cmd=x, y’is allowed.
The execution of the callback function also
depends on whether the number of
argument is valid or not.

ADL_CMD_TYPE_TEST 0x0200 ‘AT+cmd=?’ is allowed.

ADL_CMD_TYPE_READ 0x0400 ‘AT+cmd?’ is allowed.

ADL_CMD_TYPE_ACT 0x0800 ‘AT+cmd’ is allowed.

ADL_CMD_TYPE_ROOT 0x1000 All commands starting with the
subscribed string are allowed. The handler
will only receive the whole AT string (no
parameters detection).
For example, if the "at-" string is
subscribed, all "at-cmd1", "at-cmd2", etc.
strings will be received by the handler. but
the only string "at-" is not received..

Incoming commands which are matching with these options combinations will
lead to the callback function execution. If options do not match, the command
will be forwarded to be processed by the Wavecom Core Software.

• Returned values

OK
ERROR if an error occurred.

• Important note about incoming concatenated command

ADL is able to recognize and process concatenated commands coming from
external applications (Please refer to AT Commands Interface Guide for more
information on concatenated commands syntax).

In this case, this port enters a specific concatenation processing mode, which
will end as soon as the last command replies OK, or if one of the commands
used replies with an ERROR code. During this specific mode, all other external
command requests will be refused on this port: any external application
connected on this port will receive a “+CME ERROR: 515” code if it tries to

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 28 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

send another command. The embedded application can continue using this
port for its specific processes, but it has to be careful to send one (at least one,
and only one) terminal response for each subscribed command.

If a subscribed command is used in a concatenated command string, the
corresponding handler will be notified as if the command was used alone.

In order to handle the concatenation mechanism properly, each subscribed
command has to finally answer with a single terminal response (ADL_STR_OK,
ADL_STR_ERROR or other ones), otherwise the port will stay in concatenation
processing mode, refusing all internal and external commands on this one.

3.1.4.2 The adl_atCmdUnSubscribe function

This function unsubscribes from a command and its handler.

• Prototype

s16 adl_atCmdUnSubscribe (ascii * Cmdstr,
adl_atCmdHandler_t Cmdhdl)

• Parameters

Cmdstr:
The string (name) of the command we want to unsubscribe from.

Cmdhdl:
The handler of the callback function associated to the command.

• Returned values

OK if the command was found,
ERROR otherwise.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 29 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.1.4.3 Example

/* callback function */
void atabc_Handler(adl_atCmdPreParser_t *paras)
{
 /* Unsubscribe (therefore the command at+abc will only work once) */
 adl_atCmdUnSubscribe(“at+abc",
 (adl_atCmdHandler_t)atabc_Handler);
 if(paras->Type == ADL_CMD_TYPE_READ)
 adl_atSendResponsePort(ADL_AT_RSP, paras->Port,

"\r\nhandling at+abc?\r\n");
 else if(paras->Type == ADL_CMD_TYPE_TEST)
 adl_atSendResponsePort(ADL_AT_RSP, paras->Port,

"\r\nhandling at+abc=?\r\n");
 else if(paras->Type == ADL_CMD_TYPE_ACT)
 adl_atSendResponsePort(ADL_AT_RSP, paras->Port,

"\r\nhandling at+abc\r\n");
 else if(paras->Type == ADL_CMD_TYPE_PARA)
 {
 ascii buffer[25];
 wm_strcpy(buffer, "\r\nhandling at+abc=");
 wm_strcat(buffer, ADL_GET_PARAM(paras, 0));
 wm_strcat(buffer, "\r\n");
 adl_atSendResponsePort(ADL_AT_RSP, paras->Port, buffer);
 }
 adl_atSendResponsePort(ADL_AT_RSP, paras->Port, "\r\nOK\r\n");
}

/*main function */
void adl_main(adl_InitType_e adlInitType)
{
 /* Subscribe to the 'at+abc’ command in all modes and accepting 1 parameter */
 adl_atCmdSubscribe("at+abc",
 (adl_atCmdHandler_t)atabc_Handler,
 ADL_CMD_TYPE_TEST|ADL_CMD_TYPE_READ|
 ADL_CMD_TYPE_ACT|ADL_CMD_TYPE_PARA|0x0011);
}

3.1.5 Run AT commands

3.1.5.1 The adl_atCmdCreate function

This function sends a command on the required port and allows the subscription to
several responses and intermediate responses with one associated callback function,
so that when any of the responses or intermediates responses we subscribe to is
received by the ADL parser, the callback function will be executed.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 30 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Prototype

s8 adl_atCmdCreate (ascii * Cmdstr,
u16 Rspflag,
adl_atRspHandler_t Rsphdl,
[...,]
NULL)

• Parameters

Cmdstr:
The string (name) of the command we want to send. If the string does not end
with the CR character (“\r” in C language), it will be added by ADL. In case of
text mode commands (as +CMGW for example), the text end character has to
be the ^Z (“\x1A” in C language) character.

Rspflag:
This parameter is composed of the unsubscribed responses destination flag,
and the port to which the command is to be sent. The flag & destination
combination has to be done with the following macro :

ADL_AT_PORT_TYPE (_port, _flag)

The _port argument has to be a defined value of the adl_atPort_e type, and
this required port has to be available (cf. the AT/FCM port Service). If this port
is not available, or if it is a GSM or GPRS based one, the command will not be
executed.

The _flag argument has to be one of the values defined below:
If set to TRUE: the responses and intermediate responses of the sent command
that are not subscribed (i.e. not listed in the adl_atCmdCreate function
arguments) will be sent on the required port.
If set to FALSE they will not be sent to the external application.

If the ADL_AT_PORT_TYPE macro is not used, by default the command will be sent
to the Open AT® virtual port (see next paragraph for more information about At
command ports).

Rsphdl:
Handler of the callback function associated to all the responses and
intermediate responses subscribed in the adl_atCmdCreate function call.

Note that the callback function will be called one time on each response line
sent back by the Wavecom Core Software. For example, since the “AT+CGMR”
commands replies with two lines (Software version response, and then “OK”
response), the response handler will be called two times if all responses are
subscribed.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 31 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

The callback function is defined as follows:
typedef bool (* adl_atRspHandler_t) (adl_atResponse_t *)

The argument of the callback function will be an ‘adl_atResponse_t’ structure
holding the received response.
The ‘adl_atResponse_t’ structure is defined as follows (declared in the adl_at.h
header file):

typedef struct
{
 adl_strID_e RspID;
 adl_atPort_e Dest;
 u16 StrLength;
 ascii StrData[1];
} adl_atResponse_t;

This structure members are defined below:

o RspID:
Detected standard response ID if the received response is a standard
response. See § 3.15 for more information.

o Dest:
Port on which the command has been executed; it is also the destination
port where the response will be forwarded if the handler returns TRUE.

o StrLength & StrData:
Response string length & value.

The return value of the callback function has to be TRUE if the response string
has to be sent to the port provided, FALSE otherwise.

This allows a variable number of arguments, where ADL expects a list of
responses and intermediate responses to subscribe to. When the command is
executed, its responses are compared with each item of this list. For each
matching response, the callback function is called; the other responses are
processed as required by the RspFlag parameter.
Note that the last element of the list must be NULL.

If the list is set to only 2 elements “*”and NULL, when the command will be
sent, all the responses and intermediate responses received by the ADL parser
will execute the callback function until a terminal response is received by the
ADL parser.

The elements of this response list can also be set as an adl_rsp_ID_e response
ID. Please refer to §3.15 for more information.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 32 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Returned values

o OK on success (the command will be executed on the required port as
soon as possible)

o ADL_RET_ERR_PARAM on parameter error (NULL command string, or
“a/” command required (this command cannot be used with the
adl_atCmdCreate function))

o ADL_RET_ERR_UNKNOWN_HDL if the required port is not available.

• Note 1

This function can be associated with the adl_atCmdSubscribe one for filtering or
spying any intermediate response or response of a specific command send by the
external application. (See the example below).

• Note 2

Commands sent through the adl_atCmdCreate function are directly submitted to
the Wavecom Core Software AT interface: they cannot be filtered by an
adl_atCmdSubscribe mechanism. The adl_atCmdSubscribe function filters only the
commands coming from external module ports.

• Note 3

This function can be used to send “Text Mode” commands (such as “AT+CMGW”,
etc.); in order to provide the text related to this command, the adl_atCmdSendText
function has then to be used as soon as the prompt (‘> ‘) response is received in the
response handler.
Any further calls to adl_atCmdCreate on this port will just store the required
command, in order to send these as soon as the running “Text Mode” command has
ended.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 33 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Example

In the following example, we spy the ATD command by sending the AT+CLCC
command every time a subscribed intermediate response or response is received by
the ADL parser

/* atd responses callback function */
s16 ATD_Response_Handler(adl_atResponse_t *paras)
{
 /* None of the response of the ‘at+clcc’ command is subscribed but
because
 * the 2nd argument is set to TRUE, all will be sent to the external
application */
 adl_atCmdCreate("at+clcc",
 ADL_AT_PORT_TYPE (paras->Port, TRUE),
 (adl_atRspHandler_t)NULL,
 NULL);
 return TRUE;
}

/* atd callback function */
void ATD_Handler(adl_atCmdPreParser_t *paras)
{
 adl_atCmdUnSubscribe("atd",
 (adl_atCmdHandler_t) ATD_Handler);
 /* We unsubscribe the command so that when we resend the command
 * it won’t be received by the ADL parser anymore.*/
 /* We resend the command (for the phone call to be made) and subscribe
to some
 * of its responses. We also set the 2nd argument to TRUE so that the
response not
 * subscribed will be directly sent to the external application */
 adl_atCmdCreate(paras->StrData,
 TRUE,
 (adl_atRspHandler_t)ATD_Response_Handler,
 ADL_AT_PORT_TYPE (paras->Port, TRUE),
 "+WIND: 2",
 "OK",
 NULL);
}

/*main function */
void adl_main(adl_InitType_e adlInitType)
{
 /* Subscribe to the 'atd’ command.*/
 adl_atCmdSubscribe("atd",
 (adl_atCmdHandler_t)ATD_Handler,
 ADL_CMD_TYPE_ACT);
}

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 34 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.1.5.2 The adl_atCmdSendText function

This function is used to provide a running “Text Mode” command on a specific port
(e.g. “AT+CMGW”) with the required text. This function has to be used as soon as
the prompt response (“> “) comes in the response handler provided on
adl_atCmdCreate function call.

• Prototype

s8 adl_atCmdSendText (adl_port_e Port,
ascii * Text)

• Parameters

Port:
Port on which the “Text Mode” command is currently running and waiting for
some text input.

Text:
Text to be provided to the running “Text Mode” command on the required port.
If the text does not end with a ‘Ctrl-Z’ character (0x1A code), the function will
add it automatically.

• Returned values

o OK on success; the text has been provided to the running “Text Mode”
command: the response handler provided on adl_atCmdCreate call will
be notified with the command responses.

o ADL_RET_ERR_PARAM on parameter error (NULL text)

o ADL_RET_ERR_UNKNOWN_HDL if the required port is not available.

o ADL_RET_ERR_BAD_STATE if there is no “Text Mode” command
currently running on the required port.

• Note

It is not possible to send the text in several steps. As soon as the
adl_atCmdSendText function is used, the text provided will immediately be
sent, and the command will be executed (further calls to adl_atCmdSendText
will return ADL_RET_ERR_BAD_STATE, until a new “Text Mode” command is
sent on this port).
It is possible to insert new lines (\’r’ chracters) in the text body.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 35 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.1.5.3 AT commands ports processing

Several AT commands ports are available on the module; an application may know
each port’s current state using the AT/FCM Port service.

When an AT command is sent using the adl_atCmdCreate function, this is pushed on
the required port inner command stack. ADL is processing one command stack by
available port on the module.

When an AT command is sent from an external application on a specific port, this
command is also pushed on the required port inner command stack.

For each command stack, while this stack is not empty, ADL sends the commands
one by one (ie. ADL sends the command on the required port, waits until the terminal
response is received, and then continue with the next command) until reaching the
stack’s end.

In addition to module physical UART ports and logical 27.010 channel ports, there is
an additional Open AT® virtual port, usable to send commands only with Open AT®
applications (in order not to be disturbed, or not to disturb applications running on
the module physical ports).

ADL AT command stacks architecture is summarized in the following diagram:

Open-AT
virtual port

UART 1
port

UART 2
port

Logical
channel X

port

Other
ports…

ADL
command

stack

ADL
command

stack

ADL
command

stack

ADL
command

stack

ADL
command
stacks…

AT+…

responses

AT+…

responses

AT+…

responses

AT+…

responses

AT+…

responses

Open-AT app

adl atCmdCreate

Response Handler

Open-AT app

External app
AT+…

responses

Open-AT app

External app

Open-AT app

External app

Open-AT app

External app

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 36 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.2 Timers

3.2.1 Required Header Files

The header file for the functions dealing with timers is:
adl_TimerHandler.h

3.2.2 The adl_tmrSubscribe function

This function starts a timer with an associated callback function. The callback
function will be executed as soon as the timer expires.
Note:
Since the WAVECOM products time granularity is 18.5 ms, the 100 ms steps are
emulated, reaching a value as close as possible to the requested one modulo 18.5.
For example, if a 20 * 100ms timer is required, the real time value will be 1998 ms
(108 * 18.5ms).

• Prototype

adl_tmr_t *adl_tmrSubscribe(bool bCyclic,
u32 TimerValue,
u8 TimerType,
adl_tmrHandler_t Timerhdl)

• Parameters

bCyclic:
This boolean flag indicates whether the timer is cyclic (TRUE) or not (FALSE).
The cyclic timer is automatically set up when a cycle is over.

TimerValue:
The number of periods after which the timer expires (TimerType dependant).

TimerType:
Unit of the TimerValue parameter. The allowed values are defined below:

Timer type Timer unit

ADL_TMR_TYPE_100MS TimerValue is in 100 ms steps

ADL_TMR_TYPE_TICK TimerValue is in 18.5 ms tick steps

Timerhdl:
The handler of the callback function associated to the timer.
It is defined following the type below:

typedef void (*adl_tmrHandler_t) (u8)
The argument of the callback function will be the timer ID received by the ADL
parser.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 37 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Returned values

A pointer to the timer started (that will be later used, for instance for the un-
subscription). There can only be 32 timers running at the same time, if you try
to get more this function will return a NULL pointer.
Note: The function will return a NULL pointer if the timer value is zero. The
timer will not be started.

3.2.3 The adl_tmrUnSubscribe function

This function stops the timer and unsubscribes to it and his handler.
The call to this function is only meaningful to a cyclic timer or a timer that has not
expired yet.

• Prototype

s32 adl_tmrUnSubscribe(adl_tmr_t *tim,
adl_tmrHandler_t Timerhdl,
u8 TimerType)

• Parameters

tim:
The timer we want to unsubscribe to.

Timerhdl:
The handler of the callback function associated to the timer.
Note: this parameter is only used to verify the coherence of tim parameter.
Timerhdl has to be the timer handler used in the subscription procedure.
For example

PhoneTaskTimerPtr = adl_tmrSubscribe (TRUE, OneSecond,
ADL_TMR_TYPE_100MS, PhoneTaskTimer) ;

......
adl_tmrUnSubscribe (PhoneTaskTimerPtr, PhoneTaskTimer,

ADL_TMR_TYPE_100MS) ;

TimerType:
Unit of the TimerValue parameter. The allowed values are defined below:

Timer type Timer unit

ADL_TMR_TYPE_100MS TimerValue is in 100 ms steps

ADL_TMR_TYPE_TICK TimerValue is in 18.5 ms tick steps

• Returned values

o ERROR if the timer was not found or could not be stopped,
o the remaining time of the timer before it expires (unit according to the

TimerValue parameter)
o ADL_RET_ERR_BAD_HDL if the handler provided is not the timer’s handler
o ADL_RET_ERR_BAD_STATE if the handler has already expired.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 38 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.2.4 Example

adl_tmr_t *tt;
u16 timeout_period = 5; // in 100 ms steps;

void Timer_Handler(u8 Id)
{
 /* We don’t unsubscribe to the timer because it has ‘naturally’ expired
*/
 adl_atSendResponse(ADL_AT_RSP, "\r\Timer timed out\r\n");}

/*main function */
void adl_main(adl_InitType_e adlInitType)
{
 /* We set up a timer */
 tt = (adl_tmr_t *)adl_tmrSubscribe, (FALSE,
 timeout_period,
 ADL_TMR_TYPE_100MS,
 (adl_tmrHandler_t)Timer_Handler);
}

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 39 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.3 Memory Service

3.3.1 Required Header File

The header file for the memory functions is:
adl_memory.h

3.3.2 The adl_memGetType function [DEPRECATED]

This function returns the current Wireless CPU® memory type.

Note:

This function is deprecated, and will always return the ADL_MEM_TYPE_B value,
whatever is the Wireless CPU® memory type.

• Prototype

adl_memType_e adl_memGetType (void)

• Parameters

None

• Returned values

The current Wireless CPU® memory type, defined by one of the adl_memType_e
values below:

typedef enum
{
 ADL_MEM_TYPE_A,
 ADL_MEM_TYPE_B
} adl_memType_e;

ADL_MEM_TYPE_A

A memory type Wireless CPU®. Please refer to the Open AT® Memory
Resources chapter for more information about this memory type
available resource.

ADL_MEM_TYPE_B
B memory type Wireless CPU®. Please refer to the Open AT® Memory
Resources chapter for more information about this memory type
available resource.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 40 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.3.3 The adl_memGetInfo function

This function returns information about the Open AT RAM areas sizes.*

• Prototype

s32 adl_memGetInfo (adl_memInfo_t * Info)

• Parameters

Info:
Structure updated by the function, using the following type:

typedef struct
{
 u32 TotalSize;
 u32 StackSize;
 u32 HeapSize;
 u32 GlobalSize;
} adl_memInfo_t;

o TotalSize

Total RAM size for the Open AT application (in bytes).

Please refer to the § 2.8 "Memory Resources" for more information.

o StackSize
Open AT application call stack area size (in bytes).

This size is defined by the Open AT application through the
wm_apmCustomStackSize constant (Please refer to the Mandatory API
chapter for more information (§ 2.2).

o HeapSize
Open AT application total heap memory area size (in bytes).

This size is the difference between the total Open AT memory size and
the Global & Stack areas sizes.

o GlobalSize
Open AT application global variables area size (in bytes).

This size is reckoned at the binary link step; it includes the ADL library,
plug-in libraries (if any) and Open AT application global variables.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 41 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Reminder:

The Open AT RAM is divided in three areas (Call stack, Heap memory & Global
variables). This function allows to know the several area sizes.

Figure 2: Open AT RAM mapping, with adl_memInfo_t structure fields names

• Returned values

o OK on success; the Info parameter is also updated with the Open AT
RAM information.

o ADL_RET_ERR_PARAM on parameter error.

3.3.4 The adl_memGet function

This function allocates the memory for the requested size into the client application
RAM memory.

• Prototype

void * adl_memGet (u16 size)

• Parameters

size:
The memory buffer requested size (in bytes).

• Returned values

A pointer to the allocated memory buffer on success.

If the memory allocation fails, this function will lead to a ADL_ERR_MEM_GET error,
which can be handled by the Management Service. If this error is filtered and
refused by the error handler, the function will return NULL. Please refer to the §
3.9 "Management service " for more information.

Call stack

Heap
memory

Global
variables

TotalSize

StackSize

HeapSize

GlobalSize

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 42 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.3.5 The adl_memRelease function

This function releases the allocated memory buffer designed by the supplied pointer.

• Prototype

bool adl_memRelease (void * ptr)

• Parameters

ptr:
A pointer on the allocated memory buffer.

• Returned values

TRUE if the memory was correctly released.
In this case, the pointer provided is set to NULL.

If the memory release fails, this function will lead to a ADL_ERR_MEM_RELEASE
error, which can be handled by the Management Service. If this error is filtered
and refused by the error handler, the function will return FALSE. Please refer to
the § 3.9 "Management service" for more information.

3.3.1 Example

// Somewhere in the application code, used as an event handler
void MyFunction (void)
{
 // Local variables
 adl_memInfo_t MemInfo;
 u8 * MyByteBuffer

 // Gets Open AT RAM information
 adl_memGetInfo (&MemInfo);

 // Allocates a 10 bytes memory buffer
 MyByteBuffer = (u8 *) adl_memGet (10);

 // Releases the previously allocated memory buffer
 adl_memRelease (MyByteBuffer);
}

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 43 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.4 Debug traces

This service is used to display software « trace » strings on the Target Monitoring
Tool. The different ways to embed these trace strings in an Open AT® application
depends on the selected configuration in the used IDE (or with the wmmake command).
For more information about the Target Monitoring Tool, the configurations and the
Integrated Development Environments, please refer to the Tools Manual.

3.4.1 Required Header File

The header file for the flash functions is:
adl_traces.h

3.4.2 Debug configuration

When the Debug configuration is selected in the used IDE (or with the wmmake
command), the __DEBUG_APP__ compilation flag is defined, and also the following
macros.

• TRACE ((u8 TL, ascii * T, …))
Prints a “trace” in the Target Monitoring Tool.

TL defines the trace level (traces will be displayed on the CUS4 element of the
Target Monitoring Tool).
Trace levels range is from 1 to 32.
T is the trace string, which may use the standard C “sprintf” syntax.
Please note that maximum string length displayed is 256 bytes. If the string
is longer, it will be truncated on display.

Example:

u8 I = 123;
TRACE ((1, “Value if I : %d“, I));

At runtime, this will display the following string on the CUS4 level 1 on the
Target Monitoring Tool:

Value of I: 123

• DUMP (u8 TL, u8 * P, u16 L)
Displays the content (each byte in hexadecimal format) of the buffer provided
in the Target Monitoring Tool.

TL defines the trace level (traces will be displayed on the CUS4 element of the
Target Monitoring Tool).
Trace level range is from 1 to 32.
P is the buffer’s address to dump.
L is the length (in bytes) of the required dump.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 44 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Since the maximum length of a display line is 255 bytes, if the display length
is greater than 80 (each byte is displayed on 3 ascii characters), the dump
will be segmented on several lines. Each 80 bytes truncated line will end with
the “…” character sequence.

Example 1:

u8 * Buffer = “\x0\x1\x2\x3\x4\x5\x6\x7\x8\x9“;
DUMP (1, Buffer, 10);

At runtime, this will display the following string on the CUS4 level 1 on the
Target Monitoring Tool:

00 01 02 03 04 05 06 07 08 09

Example 2:

u8 Buffer [200], i;
for (i = 0 ; i < 200 ; i++) Buffer [i] = i;
DUMP (1, Buffer, 200);

At runtime, this will display the following three lines on the CUS4 level 1 on
the Target Monitoring Tool:

00 01 02 03 04 05 06 07 08 09 0A [bytes from 0B to 4D] 4E 4F...
50 51 52 53 54 55 56 57 58 59 5A [bytes from 5B to 9D] 9E 9F...
A0 A1 A2 A3 A4 A5 A6 A7 [bytes from A8 to C4] C5 C6 C7

In this Debug configuration, the FULL_TRACE and FULL_DUMP macros are ignored
(even if these are used in the application source code, they will neither be compiled,
nor displayed on the Target Monitoring Tool at runtime).

3.4.3 Full Debug configuration

When the Full Debug configuration is selected in the IDE used (or with the wmmake
command), the __DEBUG_APP__ and __DEBUG_FULL__ compilation flags are both
defined, and also the following macros.

• TRACE ((u8 TL, ascii * T, …))
Cf. the Debug configuration

• DUMP (u8 TL, u8 * P, u16 L)
Cf. the Debug configuration

• FULL_TRACE ((u8 TL, ascii * T, …))
Works exactly as the TRACE macro.

• FULL_DUMP (u8 TL, u8 * P, u16 L)
Works exactly as the DUMP macro.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 45 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.4.4 Release configuration

When the Release configuration is selected in the used IDE (or with the wmmake
command), neither the __DEBUG_APP__ nor __DEBUG_FULL__ compilation flags are
defined.
In this configuration, the TRACE, DUMP, FULL_TRACE and FULL_DUMP macros are
ignored (even if these are used in the application source code, they will neither be
compiled, nor displayed on the Target Monitoring Tool at runtime).

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 46 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.5 Flash

3.5.1 Required Header File

The header file for the flash functions is:
adl_flash.h

3.5.2 Flash Objects Management

An ADL application may subscribe to a set of objects identified by a handle, used by
all ADL flash functions.
This handle is chosen and given by the application at subscription time.
To access to a particular object, the application gives the handle and the ID of the
object to access.
At first subscription, the Handle and the associated set of IDs are saved in flash. The
number of flash object IDs associated to a given handle may be only changed after
have erased the flash objects (with the AT+WOPEN=3 command).
For a particular handle, the flash objects ID take any value, from 0 to the ID range
upper limit provided on subscription.

Important note: due to the internal storage implementation, only up to 2000 object
identifiers can exist at the same time.

3.5.2.1 Flash objects write/erase inner process overview

Written flash objects are queued in the flash object storage place. Each time the
adl_flhWrite function is called, the process below is performed:

• If the object already exists, it is now considered as "erased" (ie. "adl_flhWrite(X);"
<=> "adl_flhDelete(X); adl_flhWrite(X);")

• The flash object driver checks if there is enough place to store the new object.
If not, a Garbage Collector process is performed (see below).

• The new object is created.

About the erase process, each time the adl_flhDelete (or adl_flhWrite) function is
called on an ID, this object is from this time "considered as erased", even if it is not
physically erased (an inner "erase flag" is set on this object).
Objects are physically erased only when the Garbage Collector process is performed,
when an adl_flhWrite function call needs a size bigger than the available place in the
flash objects storage place. The Garbage Collector process erases the flash objects
storage place and re-write only the objects which do not have their "erase flag" set.
Please note that the flash memory physical limitation is the erasure cycle number,
which is granted to be at least 100.000 times.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 47 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.5.2.2 Flash objects in Remote Task Environment

When an application is running in Remote Task Environment, the flash object storage
place is emulated on the PC side: objects are read/written from/to files on the PC hard
disk, and not from/to the module's flash memory. The two storage places (module
and PC) may be synchronized using the RTE Monitor interface (cf. the Tools Manual
for more information).

3.5.3 The adl_flhSubscribe function

This function subscribes to a set of objects identified by the given Handle.

• Prototype

s8 adl_flhSubscribe (ascii* Handle, u16 NbObjectsRes)

• Parameters

Handle:
The Handle of the set of objects to subscribe to.

NbObjectRes:
The number of objects related to the given handle. It means that the IDs
available for this handle are in the range [0 , (NbObjectRes – 1)].

• Returned values

o OK on success (first allocation for this handle)

o ADL_RET_ERR_PARAM on parameter error,

o ADL_RET_ERR_ALREADY_SUBSCRIBED if space is already created for this
handle,

o ADL_FLH_RET_ERR_NO_ENOUGH_IDS if there are no longer enough
object IDs to allocate the handle.

Notes:
• Only one subscription is necessary. It is not necessary to subscribe to the
same handle at each application start.

• It is not possible to unsubscribe from a handle. To release the handle and
the associated objects, the user must do an AT+WOPEN=3 to erase the flash
objects of the Open AT® Embedded Application.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 48 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.5.4 The adl_flhExist function

This function checks if a flash object exists from the given Handle at the given ID in
the flash memory allocated to the ADL developer.

• Prototype

s32 adl_flhExist (ascii* Handle, u16 ID)

• Parameters

Handle:
The Handle of the subscribed set of objects.

ID:
The ID of the flash object to investigate (in the range allocated to the Handle
provided).

• Returned values

o the requested Flash object length on success
o 0 if the object does not exist.
o ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed
o ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range

3.5.5 The adl_flhErase function

This function erases the flash object from the given Handle at the given ID.

• Prototype

s8 adl_flhErase (ascii* Handle, u16 ID)

• Parameters

Handle:
The Handle of the subscribed set of objects.

ID:
The ID of the flash object to be erased.
Important note: If ID is set to ADL_FLH_ALL_IDS, all flash objects related to the
handle provided will be erased.

• Returned values

o OK on success
o ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed
o ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range
o ADL_FLH_RET_ERR_OBJ_NOT_EXIST if the object does not exist
o ADL_RET_ERR_FATAL if a fatal error occurred (ADL_ERR_FLH_DELETE

error event will then be generated)

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 49 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.5.6 The adl_fhWrite function

This function writes the flash object from the given Handle at the given ID, for the
length provided with the string provided. A single flash object can use up to 30
Kbytes of memory.

• Prototype

s8 adl_flhWrite (ascii* Handle, u16 ID, u16 Len, u8 *WriteData)

• Parameters

Handle:
The Handle of the subscribed set of objects.

ID:
The ID of the flash object to write.
Len:
The length of the flash object to write.
WriteData:
The string provided to write in the flash object.

• Returned values

o OK on success
o ADL_RET_ERR_PARAM if one at least of the parameters has a bad value.
o ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed
o ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range
o ADL_RET_ERR_FATAL if a fatal error occurred (ADL_ERR_FLH_WRITE

error event will then occur).
o ADL_FLH_RET_ERR_MEM_FULL if flash memory is full.
o ADL_FLH_RET_ERR_NO_ENOUGH_IDS if the object cannot be created due

to the global ID number limitation.

3.5.7 The adl_flhRead function

This function reads the flash object from the given Handle at the given ID, for the
length provided and stores it in a string.

• Prototype

s8 adl_flhRead (ascii* Handle, u16 ID, u16 Len, u8 *ReadData)

• Parameters

Handle:
The Handle of the subscribed set of objects

ID:
The ID of the flash object to read.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 50 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Len:
The length of the flash object to read.

ReadData:
The string allocated to store the read flash object.

• Returned values

o OK on success
o ADL_RET_ERR_PARAM if one at least of the parameters has a bad value.
o ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed
o ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range
o ADL_FLH_RET_ERR_OBJ_NOT_EXIST if the object does not exist.
o ADL_RET_ERR_FATAL if a fatal error occurred (ADL_ERR_FLH_READ error

event will then occur).

3.5.8 The adl_flhGetFreeMem function

This function gets the current remaining flash memory size.

• Prototype

u32 adl_flhGetFreeMem (void)

• Returned values

Current free flash memory size in bytes.

3.5.9 The adl_flhGetIDCount function

This function returns the ID count for the handle provided, or the total remaining ID
count.

• Prototype

s32 adl_flhGetIDCount (ascii* Handle)

• Parameters

Handle:
The Handle of the subscribed set of objects. If set to NULL, the total remaining
ID count will be returned.

• Returned values

o ID count on success: allocated on the handle provided, if any, or the total
remaining ID count if the handle is set to NULL.

o ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 51 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.5.10 The adl_flhGetUsedSize function

This function returns the used size by the provided ID range from the handle
provided. The handle should also be set to NULL to get the whole used size.

• Prototype

s32 adl_flhGetUsedSize (ascii* Handle, u16 StartID, u16 EndID)

• Parameters

Handle:
The Handle of the subscribed set of objects. If set to NULL, the whole flash
memory used size will be returned.

StartID:
First ID of the range from which to get the used size; has to be lower than
EndID.

EndID:
Last ID of the range from which to get the used size; has to be greater than
StartID. To get the used size by all a handle’s IDs, the [0 , ADL_FLH_ALL_IDS]
range may be used

• Returned values

o Used size on success: from the Handle provided, if any, otherwise the
whole flash memory used size

o ADL_RET_ERR_PARAM on parameter error
o ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed
o ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 52 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.6 FCM Service

ADL provides a FCM service to handle all FCM events, and to access to the data ports
provided on the product.
An ADL application may subscribe to a specific flow (UART 1, UART 2 or USB
physical/virtual ports, GSM CSD call data port, GPRS session data port or Bluetooth
virtual data ports) to exchange data on it.

Embedded Application

Wavecom Module

GSM CSD
call

V24
Serial Link

1

AT

AT
commands

GPRS
session

TCP/IP Stack

Uart 1 & 2,
physical &
logical ports

Bluetooth
virtual ports

… …

…

2

…

ADL AT
commands
services

Figure 3: Flow Control Manager representation

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 53 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

By default (ie. without any Open AT® application, or if the application does not use
the FCM service), all the module’s ports are processed by the Wavecom Core
Software. The default behaviors are:

• When a GSM CSD call is set up, the GSM CSD data port is directly connected
to the UART port where the ATD command was sent;

• When a GPRS session is set up, the GPRS data port is directly connected to
the UART port where the ATD or AT+CGDATA command was sent;

• When a Bluetooth peripheral is detected & connected through an SPP based
profile, a local data bridge may be set up between a Bluetooth virtual data
port and the required UART port, using the AT+WLDB command.

Once subscribed by an Open AT® application with the FCM service, a port is no longer
available to be used with the AT commands by an external application. The available
ports are the ones listed in the ADL AT/FCM Ports service:

• ADL_PORT_UART_X / ADL_PORT_UART_X_VIRTUAL_BASE identifiers may be
used to access the module’s physicals UARTS, or logical 27.010 protocol
ports;

• ADL_PORT_GSM_BASE identifier may be used to access a remote modem
(connected through a GSM CSD call) data flow;

• ADL_PORT_GPRS_BASE identifier may be used to exchange IP packets with
the operator network and the Internet;

• ADL_PORT_BLUETOOTH_VIRTUAL_BASE may be used to access a connected
Bluetooth device data stream with the Serial Port Profile (SPP).

The “1” switches on the figure above means that UART based ports may be used
with AT commands or FCM services as well. These switches are processed by the
adl_fcmSwitchV24State function.
The “2” switch on the figure above means that either the GSM CSD port or the GPRS
port may be subscribed at one time, but not both together.

Important note
GPRS provides only packet mode transmission. This means that the embedded
application can only send/receive IP packets to/from the GPRS flow.

3.6.1 Required Header File

The header file for the FCM functions is:
adl_fcm.h

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 54 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.6.2 The adl_fcmIsAvailable function

This function is used to check if the required port is available and ready to handle the
FCM service.

• Prototype

bool adl_fcmIsAvailable (adl_fcmFlow_e Flow);

• Parameters

Flow:
Port from which to require the state.

• Returned values

o TRUE if the port is ready to handle the FCM service
o FALSE if it is not ready

• Notes

All ports should be available for the FCM service, except:
o The Open AT® virtual one, which is only usable for AT commands,
o The Bluetooth virtual ones with enabled profiles other than the SPP one,
o If the port is already used to handle a feature required by an external

application through the AT commands (+WLDB command, or a
CSD/GPRS data session is already running)

3.6.3 The adl_fcmSubscribe function

This function subscribes to the FCM service, opening the requested port and setting
the control and data handlers. The subscription will be effective only when the
control event handler has received the ADL_FCM_EVENT_FLOW_OPENNED event.
Each port may be subscribed only one time.

Additional subscriptions may be performed, using the ADL_FCM_FLOW_SLAVE flag (see
below). Slave subscribed handles will be able to send & receive data on/from the
flow, but will know some limitations:

• For serial-line flows (UART physical & logical based ports), only the main
handle will be able to switch the Serial Link state between AT & Data mode;

• If the main handle unsubscribes from the flow, all slave handles will also be
unsubscribed.

Important note:
For serial-link related flows (UART physical & logical based ports), the corresponding
port has to be opened first with the AT+WMFM command (for physical ports), or
with the 27.010 protocol driver on the external application side (for logical ports),
otherwise the subscription will fail. See the AT Commands Interface guide for more
information.
By default, only the UART1 physical port is opened.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 55 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

A specific port state may be known using the ADL AT/FCM port service.

• Prototype

s8 adl_fcmSubscribe (adl_fcmFlow_e Flow,
 adl_fcmCtrlHdlr_f CtrlHandler,
 adl_fcmDataHdlr_f DataHandler);

• Parameters

Flow:
The allowed values are the available ports of the adl_port_e type. Only ports
with the FCM capability may be used with this service (i.e. all ports except the
ADL_PORT_OPEN_AT_VIRTUAL_BASE and not SPP ADL_PORT_BLUETOOTH_VIRTUAL_BASE
based ones).

Please note that adl_fcmFlow_e type is the same as the adl_port_e, except for
the fact that it may handle some additional FCM specific flags (see below).
Previous version FCM flows identifiers have been kept for upward
compatibility. However, these constants should be considered as deprecated,
and the adl_port_e type members should now be used instead.

#define ADL_FCM_FLOW_V24_UART1 ADL_PORT_UART1
#define ADL_FCM_FLOW_V24_UART2 ADL_PORT_UART2
#define ADL_FCM_FLOW_V24_USB ADL_PORT_USB
#define ADL_FCM_FLOW_GSM_DATA ADL_PORT_GSM_BASE
#define ADL_FCM_FLOW_GPRS ADL_PORT_GPRS_BASE

To perform a slave subscription (see above), a bit-wise or has to be done with
the flow ID and the ADL_FCM_FLOW_SLAVE flag; for example:

adl_fcmSubscribe (ADL_PORT_UART1 | ADL_FCM_FLOW_SLAVE,

 MyCtrlHandler, MyDataHandler);

CtrlHandler:
FCM control events handler, using the following type:
typedef bool (* adl_fcmCtrlHdlr_f) (adl_fcmEvent_e event);

The FCM control events are defined below (All handlers related to the
concerned flow (master and slaves) will be notified together with these events):

o ADL_FCM_EVENT_FLOW_OPENNED (related to adl_fcmSubscribe),
o ADL_FCM_EVENT_FLOW_CLOSED (related to adl_fcmUnsubscribe),
o ADL_FCM_EVENT_V24_DATA_MODE (related to adl_fcmSwitchV24State),
o ADL_FCM_EVENT_V24_DATA_MODE_EXT (see note below),
o ADL_FCM_EVENT_V24_AT_MODE (related to adl_fcmSwitchV24State),
o ADL_FCM_EVENT_V24_AT_MODE_EXT (see note below),
o ADL_FCM_EVENT_RESUME (related to adl_fcmSendData and

adl_fcmSendDataExt),
o ADL_FCM_EVENT_MEM_RELEASE (related to adl_fcmSendData and

adl_fcmSendDataExt) ,

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 56 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

This handler return value is not relevant, except for
ADL_FCM_EVENT_V24_AT_MODE_EXT.

DataHandler:
FCM data events handler, using the following type:
typedef bool (* adl_fcmDataHdlr_f) (u16 DataLen, u8 * Data);

This handler receives data blocks from the associated flow.
Once the data block is processed, the handler must return TRUE to release the
credit, or FALSE if the credit must not be released. In this case, all credits will
be released next time the handler returns TRUE.

On all flows, all data handlers (master and slaves) subscribed are notified with
a data event, and the credit will be released only if all handlers return TRUE:
each handler should return TRUE as default value.

If a credit is not released on the data block reception, it will be released the
next time the data handler returns TRUE. The adl_fcmReleaseCredits() should
also be used to release credits outside of the data handler.

Maximum size of each data packet to be received by the data handlers depends
on the flow type:

o On serial link flows (UART physical & logical based ports): 120 bytes;
o On GSM CSD data port: 270 bytes ;
o On GPRS port: 1500 bytes ;
o On Bluetooth virtual ports: 120 bytes.

If data size to be received by the Open AT® application exceeds this maximum
packet size, data will be segmented by the Flow Control Manager, which will
call the Data Handlers several times with the segmented packets.
Please note that on GPRS flow, whole IP packets will always be received by the
Open AT® application.

• Returned values

o A positive or null handle on success (which will have to be used in all
further FCM operations). The Control handler will also receive a
ADL_FCM_EVENT_FLOW_OPENNED event when flow is ready to
process,

o ADL_RET_ERR_PARAM if one parameter has an incorrect value,
o ADL_RET_ERR_ALREADY_SUBSCRIBED if the flow is already subscribed

in master mode,
o ADL_RET_ERR_NOT_SUBSCRIBED if a slave subscription is made when

master flow is not subscribed,
o ADL_FCM_RET_ERROR_GSM_GPRS_ALREADY_OPENNED if a GSM or

GPRS subscription is made when the other one is already subscribed.
o ADL_RET_ERR_BAD_STATE if the required port is not available.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 57 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Notes

• When “7 bits” mode is enabled on a v24 serial link, in data mode, payload
data is located on the 7 least significant bits (LSB) of every byte.

• When a serial link is in data mode, if the external application sends the
sequence “1s delay ; +++ ; 1s delay”, this serial link is switched to AT mode,
and corresponding handler is notified by the
ADL_FCM_EVENT_V24_AT_MODE_EXT event. Then the behavior depends on
the returned value.
If it is TRUE, all this flow remaining handlers are also notified with this event.
The main handle cannot be un-subscribed in this state.
If it is FALSE, this flow remaining handlers are not notified with this event, and
this serial link is immediately switched back to data mode.
In the first case, after the ADL_FCM_EVENT_V24_AT_MODE_EXT event, the
main handle subscriber should switch the serial link to data mode with the
adl_fcmSwitchV24State API, or wait for the
ADL_FCM_EVENT_V24_DATA_MODE_EXT event. This event will come when the
external application sends the “ATO” command: the serial link is switched to
data mode, and then all V24 clients are notified.

• When a GSM data call is released from the remote part, the GSM flow will
automatically be unsubscribed (the ADL_FCM_EVENT_FLOW_CLOSED event
will be received by all the flow subscribers).

• When a GPRS session is released, or when a GSM data call is released from
the module side (with the adl_callHangUp function), the corresponding GSM or
GPRS flow have to be unsubscribed. These flows will have to be subscribed
again before starting up a new GSM data call, or a new GPRS session.

• For serial link flows, the serial line parameters (speed, character framing,
etc...) must not be modified while the flow is in data state. In order to change
these parameters' value, the flow concerned has firstly to be switched back in
AT mode with the adl_fcmSwitchV24State API. Once the parameters have
changed, the flow may be switched again to data mode, using the same API.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 58 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.6.4 The adl_fcmUnsubscribe function

This function unsubscribes from a previously subscribed FCM service, closing the
previously opened flows. The unsubscription will be effective only when the control
event handler has received the ADL_FCM_EVENT_FLOW_CLOSED event.

If slave handles were subscribed, as soon as the master unsubscribes from the flow,
all the slaves will also be unsubscribed.

• Prototype

s8 adl_fcmUnsubscribe (u8 Handle);

• Parameters

Handle:
Handle returned by the adl_fcmSubscribe function.

• Returned values

o OK on success. The Control handler will also receive a
ADL_FCM_EVENT_FLOW_CLOSED event when flow is ready to process

o ADL_RET_ERR_UNKNOWN_HDL if the handle is incorrect,
o ADL_RET_ERR_NOT_SUBSCRIBED if the flow is already unsubscribed,
o ADL_RET_ERR_BAD_STATE if the serial link is not in AT mode.

3.6.5 The adl_fcmReleaseCredits function

This function releases some credits for requested flow handle.
The slave subscribers should not use this API.

• Prototype

s8 adl_fcmReleaseCredits (u8 Handle,
 u8 NbCredits);

• Parameters

Handle:
Handle returned by the adl_fcmSubscribe function.
NbCredits:
Number of credits to release for this flow. If this number is greater than the
number of previously received data blocks, all credits are released. If an
application wants to release all received credits at any time, it should call the
adl_fcmReleaseCredits API with NbCredits parameter set to 0xFF.

• Returned values

o OK on success.
o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,
o ADL_RET_ERR_BAD_HDL if the handle is a slave one.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 59 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.6.6 The adl_fcmSwitchV24State function

This function switches a serial link state to AT mode or to Data mode. The operation
will be effective only when the control event handler has received an
ADL_FCM_EVENT_V24_XXX_MODE event. Only the main handle subscriber can use
this API.

• Prototype

s8 adl_fcmSwitchV24State (u8 Handle,
 u8 V24State);

• Parameters

Handle:
Handle returned by the adl_fcmSubscribe function.

V24State:
Serial link state to switch to. Allowed values are defined below:
ADL_FCM_V24_STATE_AT,
ADL_FCM_V24_STATE_DATA

• Returned values

o OK on success. The Control handler will also receive a
ADL_FCM_EVENT_V24_XXX_MODE event when the serial link state has
changed

o ADL_RET_ERR_PARAM if one parameter has an incorrect value
o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown
o ADL_RET_ERR_BAD_HDL if the handle is not the main flow one

3.6.7 The adl_fcmSendData function

This function sends a data block on the requested flow.

• Prototype

s8 adl_fcmSendData (u8 Handle,
 u8 * Data,
 u16 DataLen);

• Parameters

Handle:
Handle returned by the adl_fcmSubscribe function.
Data:
Data block buffer to write.
DataLen:
Data block buffer size.
Maximum data packet size depends on the subscribed flow:

o On serial link based flows : 2000 bytes;
o On GSM data flow : no limitation (memory allocation size);
o On GPRS flow : 1500 bytes;
o On Bluetooth virtual ports: 2000 bytes.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 60 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Returned values

o OK on success. The Control handler will also receive a
ADL_FCM_EVENT_MEM_RELEASE event when the data block memory
buffer is released;

o ADL_FCM_RET_OK_WAIT_RESUME on success, but the last credit was
used. The Control handler will also receive a
ADL_FCM_EVENT_MEM_RELEASE event when the data block memory
buffer will be released;

o ADL_RET_ERR_PARAM is a parameter has an incorrect value;
o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown;
o ADL_RET_ERR_BAD_STATE if the flow is not ready to send data;
o ADL_FCM_RET_ERR_WAIT_RESUME if the flow has no more credit to

use.

On ADL_FCM_RET_XXX_WAIT_RESUME returned value, the subscriber has to
wait for a ADL_FCM_EVENT_RESUME event on Control Handler to continue
sending data.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 61 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.6.8 The adl_fcmSendDataExt function

This function sends a data block on the requested flow. This API do not perform any
processing on the data block provided, which is sent directly on the flow.

• Prototype

s8 adl_fcmSendDataExt (u8 Handle,
 adl_fcmDataBlock_t * DataBlock);

• Parameters

Handle:
Handle returned by the adl_fcmSubscribe function.

DataBlock:
Data block buffer to write, using the following type:
typedef struct
{

u16 Reserved1[4];
u32 Reserved3;
u16 DataLength; /* Data length */
u16 Reserved2[5];
u8 Data[1]; /* Data to send */

} adl_fcmDataBlock_t;
The block must be dynamically allocated and filled by the application, before
sending it to the function. The allocation size has to be
sizeof (adl_fcmDataBlock_t) + DataLength, where DataLength is the value to
be set in the DataLength field of the structure.

Maximum data packet size depends on the subscribed flow:

o On serial link based flows: 2000 bytes,
o On GSM data flow: no limitation (memory allocation size),
o On GPRS flow: 1500 bytes,
o On Bluetooth virtual ports: 2000 bytes.

• Returned values

o OK on success. The Control handler will also receive a
ADL_FCM_EVENT_MEM_RELEASE event when the data block memory
buffer is released,

o ADL_FCM_RET_OK_WAIT_RESUME on success, but the last credit was
used. The Control handler will also receive a
ADL_FCM_EVENT_MEM_RELEASE event when the data block memory
buffer is released,

o ADL_RET_ERR_PARAM is a parameter has an incorrect value,
o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,
o ADL_RET_ERR_BAD_STATE if the flow is not ready to send data,
o ADL_FCM_RET_ERR_WAIT_RESUME if the flow has no more credit to

use.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 62 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

On ADL_FCM_RET_XXX_WAIT_RESUME returned value, the subscriber has to
wait for an ADL_FCM_EVENT_RESUME event on Control Handler to continue
sending data.

Important Remark:
The Data block will be released by the adl_fcmSendDataExt() API on OK and
ADL_FCM_RET_OK_WAIT_RESUME return values (the memory buffer will be
effectively released once the ADL_FCM_EVENT_MEM_RELEASE event is received in
the Control Handler). The application has to use only dynamic allocated buffers (with
adl_memGet function).

3.6.9 The adl_fcmGetStatus function

This function gets the buffer status for requested flow handle, in the requested way.

• Prototype

s8 adl_fcmGetStatus (u8 Handle,
 adl_fcmWay_e Way);

• Parameters

Handle:
Handle returned by the adl_fcmSubscribe function.

Way:
As flows have two ways (from Embedded application, and to Embedded
application), this parameter specifies the direction (or way) from which the
buffer status is requested. The possible values are:

typedef enum {
 ADL_FCM_WAY_FROM_EMBEDDED,
 ADL_FCM_WAY_TO_EMBEDDED
} adl_fcmWay_e;

• Returned values

o ADL_FCM_RET_BUFFER_EMPTY if the requested flow and way buffer is
empty,

o ADL_FCM_RET_BUFFER_NOT_EMPTY if the requested flow and way
buffer is not empty; the Flow Control Manager is still processing data on
this flow,

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,
o ADL_RET_ERR_PARAM if the way parameter value in out of range.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 63 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.7 GPIO Service

ADL provides a GPIO service to handle GPIO operations.

3.7.1 Required Header File

The header file for the GPIO functions is:
adl_gpio.h

3.7.2 The adl_ioSubscribe function

This function subscribes to some GPIOs and sets up a polling system if required.
Note: using the product's second UART locks some GPIOs, which will not be available
for allocation by the application; please refer to the corresponding section for more
information.

• Prototype

s8 adl_ioSubscribe (u32 GpioMask,
 u32 GpioDir,
 u32 GpioDefValues,
 u32 PollingTime,
 adl_ioHdlr_f GpioHandler);

• Parameters

GpioMask:
Mask of GPIOs to subscribe, using the following defined values. One or several

GPIOs may be subscribed, by performing a logical OR between the requested
identifiers.

For Wismo Pac P31X3 and P32X3 products:
ADL_IO_P32X3_GPI,
ADL_IO_P32X3_GPIO_0,
ADL_IO_P32X3_GPIO_2,
ADL_IO_P32X3_GPIO_3,
ADL_IO_P32X3_GPIO_4,
ADL_IO_P32X3_GPIO_5

For Wismo Pac P32X6 product:

ADL_IO_P32X6_GPI,
ADL_IO_P32X6_GPO_0,
ADL_IO_P32X6_GPIO_0,
ADL_IO_P32X6_GPIO_2,
ADL_IO_P32X6_GPIO_3,
ADL_IO_P32X6_GPIO_4,
ADL_IO_P32X6_GPIO_5,
ADL_IO_P32X6_GPIO_8

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 64 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

For Wismo Quik Q23X3 and Q24X3 products:
ADL_IO_Q24X3_GPI,
ADL_IO_Q24X3_GPO_1,
ADL_IO_Q24X3_GPO_2,
ADL_IO_Q24X3_GPIO_0,
ADL_IO_Q24X3_GPIO_4,
ADL_IO_Q24X3_GPIO_5

For Wismo Quik Q24X6 products:

ADL_IO_Q24X6_GPI,
ADL_IO_Q24X6_GPO_0,
ADL_IO_Q24X6_GPO_1,
ADL_IO_Q24X6_GPO_2,
ADL_IO_Q24X6_GPO_3,
ADL_IO_Q24X6_GPIO_0,
ADL_IO_Q24X6_GPIO_4,
ADL_IO_Q24X6_GPIO_5

For Wismo Quik Q2400 products:

ADL_IO_Q24X0_GPI,
ADL_IO_Q24X0_GPO_0,
ADL_IO_Q24X0_GPO_1,
ADL_IO_Q24X0_GPO_2,
ADL_IO_Q24X0_GPO_3,
ADL_IO_Q24X0_GPIO_0,
ADL_IO_Q24X0_GPIO_4,
ADL_IO_Q24X0_GPIO_5

For Wismo Quik Q31X6 product:

ADL_IO_Q31X6_GPI,
ADL_IO_Q31X6_GPO_1,
ADL_IO_Q31X6_GPO_2,
ADL_IO_Q31X6_GPIO_3,
ADL_IO_Q31X6_GPIO_4,
ADL_IO_Q31X6_GPIO_5,
ADL_IO_Q31X6_GPIO_6,
ADL_IO_Q31X6_GPIO_7

For Wismo Pac P5186 product:

ADL_IO_P51X6_GPO_0
ADL_IO_P51X6_GPO_1,
ADL_IO_P51X6_GPIO_0,
ADL_IO_P51X6_GPIO_4,
ADL_IO_P51X6_GPIO_5,
ADL_IO_P51X6_GPIO_8,
ADL_IO_P51X6_GPIO_9,
ADL_IO_P51X6_GPIO_10,
ADL_IO_P51X6_GPIO_11,
ADL_IO_P51X6_GPIO_12

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 65 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

For Wismo Quik Q25X1 product:
ADL_IO_Q25X1_GPI
ADL_IO_Q25X1_GPO_0
ADL_IO_Q25X1_GPO_1
ADL_IO_Q25X1_GPO_2
ADL_IO_Q25X1_GPO_3
ADL_IO_Q25X1_GPIO_0
ADL_IO_Q25X1_GPIO_1
ADL_IO_Q25X1_GPIO_2
ADL_IO_Q25X1_GPIO_3
ADL_IO_Q25X1_GPIO_4
ADL_IO_Q25X1_GPIO_5

For Wismo Quik Q24 CLASSIC products:
ADL_IO_Q24CLASSIC_GPI,
ADL_IO_Q24CLASSIC_GPO_0,
ADL_IO_Q24CLASSIC_GPO_1,
ADL_IO_Q24CLASSIC_GPO_2,
ADL_IO_Q24CLASSIC_GPO_3,
ADL_IO_Q24CLASSIC_GPIO_0,
ADL_IO_Q24CLASSIC_GPIO_4,
ADL_IO_Q24CLASSIC_GPIO_5

For Wismo Quik Q24 PLUS products:
ADL_IO_Q24PLUS_GPI,
ADL_IO_Q24PLUS_GPO_0,
ADL_IO_Q24PLUS_GPO_1,
ADL_IO_Q24PLUS_GPO_2,
ADL_IO_Q24PLUS_GPO_3,
ADL_IO_Q24PLUS_GPIO_0,
ADL_IO_Q24PLUS_GPIO_4,
ADL_IO_Q24PLUS_GPIO_5

For Wismo Quik Q24 AUTO products:
ADL_IO_Q24AUTO_GPI,
ADL_IO_Q24AUTO_GPO_0,
ADL_IO_Q24AUTO_GPO_1,
ADL_IO_Q24AUTO_GPO_2,
ADL_IO_Q24AUTO_GPO_3,
ADL_IO_Q24AUTO_GPIO_0,
ADL_IO_Q24AUTO_GPIO_4,
ADL_IO_Q24AUTO_GPIO_5

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 66 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

For Wismo Quik Q24 EXTENDED products:
ADL_IO_Q24EXTENDED_GPI,
ADL_IO_Q24EXTENDED_GPO_0,
ADL_IO_Q24EXTENDED_GPO_1,
ADL_IO_Q24EXTENDED_GPO_2,
ADL_IO_Q24EXTENDED_GPO_3,
ADL_IO_Q24EXTENDED_GPIO_0,
ADL_IO_Q24EXTENDED_GPIO_4,
ADL_IO_Q24EXTENDED_GPIO_5

GpioDir:
Mask of GPIO directions to subscribe. For each allocated GPIO, the
corresponding bit in the mask should be set to one of the following values:

o 1: input
o 0: output.

The “GpioMask” constants should be used also for this parameter. If this
parameter is set to 0, all subscribed GPIOs are allocated as outputs. If it is set
to 0xFFFFFFFF, all subscribed GPIOs are allocated as inputs.
Note: this parameter is only relevant for GPIOs; GPIs are always subscribed as
inputs, and GPOs are always subscribed as outputs, whatever the GpioDir
corresponding bit value.

GpioDefValues:
Mask of GPIO default values when set as an output. For each subscribed
output GPIO, the corresponding bit in the mask is the default value after
allocation (0 or 1). The “GpioMask” constants should also be used for this
parameter. If this parameter is set to 0, all subscribed output GPIOs are set to
0. If it is set to 0xFFFFFFFF, all subscribed output GPIOs are set to 1.

PollingTime:
If some IO is allocated as input, this parameter represents the time interval
between two GPIO polling operations (unit is 100ms);
If no polling is requested, this parameter must be 0.

GpioHandler:
Handler receiving the status of the GPIOs specified by the mask. Must be NULL
if no polling is requested. The following type is used:

typedef void (*adl_ioHdlr_f) (u8 GpioHandle, u32 GpioState);

GpioHandle: handle on which the polling GPIOs are allocated
GpioState: mask of read values on polling GPIOs.

This handler is called every time the “GpioState” value changes (ie. one of the
allocated GPIOs has changed).

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 67 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Returned values

o A positive or null GPIO handle on success,
o ADL_RET_ERR_PARAM if a parameter has an incorrect value,
o ADL_RET_ERR_ALREADY_SUBSCRIBED if a requested GPIO was not free,

.
o ADL_RET_ERR_FATAL if a fatal error occurred (a ADL_ERR_IO_ALLOCATE

error event will also be sent)

• Note:

Some product hardware related features (UART2, external battery charging
mechanism on Q2501) may lock some GPIOs, which will not be available for
allocation by the application; please refer to the corresponding section for more
information.

3.7.3 The adl_ioUnsubscribe function

This function unsubscribes from a previously allocated GPIO handle.

• Prototype

s8 adl_ioUnsubscribe (u8 Handle);

• Parameters

Handle:
Handle previously returned by a call to adl_ioSubscribe function.

• Returned values

o OK on success.
o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown
o ADL_RET_ERR_FATAL if a fatal error occurred (a ADL_ERR_IO_RELEASE

error event will also be sent)

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 68 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.7.4 The adl_ioRead function

This function reads all GPIOs from a previously allocated handle.

• Prototype

s32 adl_ioRead (u8 Handle);

• Parameters

Handle:
Handle previously returned by a call to adl_ioSubscribe function.

• Returned values

The function returns:
- the Gpio read values mask on success
- ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown
- ADL_RET_ERR_FATAL if a fatal error has occurred
- ADL_RET_ERR_BAD_STATE if there is nothing to read
 corresponding to the handle

3.7.5 The adl_ioWrite function

This function writes on one or more GPIOs from a previously allocated handle.

• Prototype

s8 adl_ioWrite (u8 Handle,
 u32 GpioMask,
 u32 GpioValues);

• Parameters

Handle:
Handle previously returned by a call to adl_ioSubscribe function.

GpioMask:
Mask of GPIO to write.

GpioValues:
Mask of GPIO values to write.

• Returned values

o OK on success.
o ADL_RET_ERR_UNKNOWN_HDL if the handle provided is unknown
o ADL_RET_ERR_PARAM if one parameter has an incorrect value
o ADL_RET_ERR_FATAL if a fatal error occurred (a ADL_ERR_IO_WRITE

error event will also be sent)

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 69 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.7.6 The adl_io GetProductType function

This function returns the product type.

• Prototype

adl_ioProductTypes_e adl_ioGetProductType (void);

• Returned values

This function returns the product type, with the following defined values:
ADL_IO_PRODUCT_TYPE_Q24X3 (for Q23X3 and Q24X3 products)
ADL_IO_PRODUCT_TYPE_Q24X6
ADL_IO_PRODUCT_TYPE_P32X3 (for P31X3 and P32X3 products)
ADL_IO_PRODUCT_TYPE_P32X6
ADL_IO_PRODUCT_TYPE_Q31X6
ADL_IO_PRODUCT_TYPE_P5186
ADL_IO_PRODUCT_TYPE_Q24X0
ADL_IO_PRODUCT_TYPE_Q25X1
ADL_IO_PRODUCT_TYPE_Q24CLASSIC
ADL_IO_PRODUCT_TYPE_Q24PLUS
ADL_IO_PRODUCT_TYPE_Q24AUTO
ADL_IO_PRODUCT_TYPE_Q24EXTENDED

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 70 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.8 Bus Service

ADL provides a bus service to handle all SPI, I2C soft, I2C hard and Parallel bus
operations.
Note: for bus management operations, the Q25x1 series module behaves as Q2406
modules.

3.8.1 Required Header File

The header file for the bus functions is:
adl_bus.h

3.8.2 The adl_busSubscribe function

This function subscribes to a specific bus type.

• Prototype

s8 adl_busSubscribe (u32 BusAddress,
 u32 Param);

• Parameters

BusAddress:

Type and address of the bus to subscribe to, using the following defined
values, by performing a logical OR between type and address.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 71 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

 Possible type values Possible address values

SPI bus ADL_BUS_TYPE_SPI ADL_BUS_SPI_ADDR_CS_SPI_EN:
use SPI_EN pin as Chip Select
(for Q24X6, Q2400, Q24 Classic,
Q24 Plus, Q24 Extended and
Q24 Auto products, this setting
is automatically mapped on GPO
3 used as Chip Select ;
for P32X6 product, this setting is
automatically mapped on GPIO 8
used as Chip Select);
Not available for P5186 product).

ADL_BUS_SPI_ADDR_CS_SPI_AUX:
use SPI_AUX pin as Chip Select
(for Q24X6, Q2400, P32X6, Q24
Classic, Q24 Plus, Q24 Extended
and Q24 Auto products, this
setting is automatically mapped
on GPO 0 used as Chip Select ;
Not available for P5186 product
Not available for Q31X6 product).

ADL_BUS_SPI_ADDR_CS_GPIO :
a GPIO or GPO is used as Chip
Select.
The used GPIO index is given by
a logical OR with the index
defined in IO service
This IO must not be allocated by
any application.

ADL_BUS_SPI_ADDR_CS_NONE
The Chip Select signal is not
handled by the ADL BUS service.
The application should subscribe
to a GPIO in order to handle the
SPI Chip Select signal.

IC2 soft
bus

ADL_BUS_TYPE_I2C_SOFT Less Significant Byte of BusAddress
parameter is used as 7 bits slave
address for devices on I2C bus.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 72 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

 Possible type values Possible address values

IC2
hard
bus

ADL_BUS_TYPE_I2C_HARD Less Significant Byte of BusAddress
parameter is used as 7 bits slave
address for devices on I2C bus (for
Q24X6, Q2400, Q3106, Q24 Classic,
Q24 Plus, Q24 Extended and Q24 Auto
products).

Parallel
bus

ADL_BUS_TYPE_PARALLEL ADL_BUS_PARA_LCDEN_AS_CS:
use LCD_EN pin as Chip Select

On P32X6 product, the LCD_EN
pin is the same as the GPIO 8
pin; it must not be allocated by
any application.

ADL_BUS_PARA_CSUSR_AS_CS:
use CS_USER pin as Chip Select
(GPIO 5 on Pac products, GPIO 3
on Q31X6 product).
This GPIO pin must not be
allocated by any application.

Param:
Bus parameters, defined by following values, using a logical OR to combine the
different settings:

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 73 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

for SPI bus:
o Clock speed:

Speed constant

Supported
on Q2XX3
and P3XX3
products

Supported
Q24 Classic,

Q24 Plus,
Q24

Extended,
Q24 Auto

and
products

Supported
on P5186
product

ADL_BUS_SPI_SCL_SPEED_13Mhz Yes

ADL_BUS_SPI_SCL_SPEED_6_5Mhz Yes Yes

ADL_BUS_SPI_SCL_SPEED_4_33Mhz Yes Yes

ADL_BUS_SPI_SCL_SPEED_3_25Mhz Yes Yes Yes

ADL_BUS_SPI_SCL_SPEED_2_6Mhz Yes

ADL_BUS_SPI_SCL_SPEED_2_167Mhz Yes Yes

ADL_BUS_SPI_SCL_SPEED_1_857Mhz Yes

ADL_BUS_SPI_SCL_SPEED_1_625Mhz Yes Yes

ADL_BUS_SPI_SCL_SPEED_1_44Mhz Yes

ADL_BUS_SPI_SCL_SPEED_1_3Mhz Yes

ADL_BUS_SPI_SCL_SPEED_1_181Mhz Yes

ADL_BUS_SPI_SCL_SPEED_1_083Mhz Yes

ADL_BUS_SPI_SCL_SPEED_1Mhz Yes

ADL_BUS_SPI_SCL_SPEED_926Khz Yes

ADL_BUS_SPI_SCL_SPEED_867Khz Yes

ADL_BUS_SPI_SCL_SPEED_812Khz Yes Yes

ADL_BUS_SPI_SCL_SPEED_101Khz Yes

o Clock mode:
ADL_BUS_SPI_CLK_MODE_0

(the rest state is 0, data valid on rising edge)
ADL_BUS_SPI_CLK_MODE_1

(the rest state is 0, data valid on falling edge)
ADL_BUS_SPI_CLK_MODE_2

(the rest state is 1, data valid on rising edge)
ADL_BUS_SPI_CLK_MODE_3

(the rest state is 1, data valid on falling edge)

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 74 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

o Chip Select Polarity:
ADL_BUS_SPI_CS_POL_LOW, for low polarity
ADL_BUS_SPI_CS_POL_HIGH, for high polarity

o Lsb or Msb first:

ADL_BUS_SPI_MSB_FIRST, to send data MSB first
ADL_BUS_SPI_LSB_FIRST, to send data LSB first

o Gpio Handling:

(only when an IO is used as Chip Select)
ADL_BUS_SPI_BYTE_HANDLING,

the IO signal pulse on each data byte,
ADL_BUS_SPI_FRAME_HANDLING,

the IO signal works as a normal chip select.

For I2C Soft-bus:

o SCL signal GPIO:
The GPIO index to use to handle the SCL signal (shifted to the two
MSBytes)

o SDA signal GPIO:

The GPIO index to use to handle the SDA signal (on the two LSBytes)

Remark: the ADL_IO_ID_U32_TO_U16 macro should be used to convert the
used GPIO ID to u16 type before calling the API.
Example:

Adl_busSubscribe(ADL_BUS_TYPE_IC2_SOFT,
ADL_IO_ID_U32_TO_U16(MySDAGpio) |
(ADL_IO_ID_U32_TO_U16(MySCLGpio)<<16));

For I2C Hard bus:

o Clk_Speed:
The Clk_Speed parameter sets the required I2C bus speed. Defined values
are:

• ADL_BUS_I2C_HARD_CLK_STD (standard I2C bus speed, 100
Kbit/s)

• ADL_BUS_I2C_HARD_CLK_FAST (fast I2C bus speed, 400 Kbit/s)
For Parallel bus:

o Data Order:
ADL_BUS_PARA_DATA_DIRECT_ORDER,

to send data on direct order
ADL_BUS_PARA_DATA_REVERSE_ORDER,

to send data on reverse order

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 75 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

o LCD_EN signal polarity (only for LCD_EN chip select):
ADL_BUS_PARA_LCDEN_POL_LOW

data is sampled on the rising edge from low state to high state of
LCD_EN.

ADL_BUS_PARA_LCDEN_POL_HIGH
data is sampled on the falling edge from high state to low state of
LCD_EN.

o LCD_EN Address Setup Time (only for LCD_EN chip select):

This is the time interval between the setting of an address for the
Parallel bus and the activation of the LCD_EN pin. It is the T1 time in the
figure below.
The allowed values are from 0 to 31 (using bits 0 to 4).
The resulting time interval is:

For P32X3 product: (X * 38.5) ns ;
For P32X6 product: (1 + 2 X) * 19 ns.

Figure 4: LCD_EN Address Setup chronogram

o LCD_EN Signal Pulse Duration (only for LCD_EN chip select):

This is the time interval during which the LCD_EN pin is valid. It is the T2
time in the figure above.
The allowed values are from 0 to 31 (using bits 5 to 10).
The resulting time interval is:

For P32X3 product: (X + 1.5) * 38.5 ns ;
For P32X6 product: (1 + 2 * (X + 1)) * 19 ns.
(Warning, for the P32X6 product, the 0 value in considered as 32).

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 76 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

o CS_USER number of wait states (only for CS_USER chip select):
This is the time interval during which the data is valid on the bus, using
the defined values:

ADL_BUS_PARA_CSUSR_0_WAIT_STATE (62 ns)
ADL_BUS_PARA_CSUSR_1_WAIT_STATE (100 ns)
ADL_BUS_PARA_CSUSR_2_WAIT_STATE (138 ns)
ADL_BUS_PARA_CSUSR_3_WAIT_STATE (176 ns)

• Returned values

A positive or null bus handle on success.
ADL_RET_ERR_PARAM if one parameter has an incorrect value
ADL_RET_ERR_ALREADY_SUBSCRIBED if requested bus and address is already
subscribed
For other negative errors, please refer to the BUS API chapter of the Open AT®
Basic Development Guide.

• Remark

If one or more IOs are required to open a bus, these IOs must not be
subscribed by any application. On the bus unsubscribe operation, the IOs can
be subscribed again.

3.8.3 The adl_busUnsubscribe function

This function unsubscribes from a previously subscribed bus type

• Prototype

s8 adl_busUnsubscribe (u8 Handle);

• Parameters

Handle:
Handle previously returned by adl_busSubscribe function.

• Returned values

o OK on success.
o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.
o For other negative errors, please refer to the BUS API chapter of the

Open AT® Basic Development Guide.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 77 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.8.4 The adl_busRead function

This function reads data from a previously subscribed bus type

• Prototype

s8 adl_busRead (u8 Handle,
 adl_busAccess_t *pAccessMode,
 u32 DataLen,
 void * Data);

• Parameters

Handle:
Handle previously returned by adl_busSubscribe function.

pAccessMode:
Bus access mode, defined according to the following type:
typedef struct
{
 u32 Address;
 u32 Opcode;
 u8 OpcodeLength;
 u8 AddressLength;
 u8 AccessSize; (reserved for future products)
} adl_busAccess_t;

This parameter is processed differently according to bus type:

• For SPI bus:
For Q24X3 and P32X3 products:

one byte can be sent through the Opcode parameter
(only the LSByte is used; if OpcodeLength is less than 8 bits, only the
MSBits of the LSByte are used),

two bytes can be sent through the Address parameter
(only the two LSBytes are used; if OpcodeLength is less than 24 bits,
only the MSBits of the two LSBytes are used),

the OpcodeLength is the sum of Opcode and Address lengths in bits
(if OpcodeLength is 0, nothing is sent;
if OpcodeLength < 9, just Opcode is sent;
if 8 < OpcodeLength < 25, Opcode then Address are sent),

the AddressLength parameter is not used.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 78 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

For Q24X6, Q2400 P32X6, Q24 Classic, Q24 Plus, Q24 Extended and Q24
Auto products:

Up to 32 bits can be sent through the Opcode parameter, according to the
OpcodeLength parameter (in bits).
if OpcodeLength is less than 32 bits, only MSBits are used.

Up to 32 bits can be sent through the Address parameter, according to the
AddressLength parameter (in bits).
if AddressLength is less than 32 bits, only MSBits are used.

• For I2C Soft bus:

Not used, this parameter should be NULL.

• For I2C hard bus:
Not used, this parameter should be NULL.

• For Parallel bus:
Only the Address parameter is used.
This parameter is used to set the A2 pin value ; it can be set to the
following values:
WM_BUS_PARA_ADDRESS_A2_SET, to set the A2 pin;
WM_BUS_PARA_ADDRESS_A2_RESET, to reset the A2 pin

DataLen:
Number of bytes to read from the bus.

Data:
Buffer to which the read bytes are to be copied.

• Returned values

o OK on success.
o ADL_RET_ERR_UNKNOWN_HDL if the handle provided is unknown,
o ADL_RET_ERR_PARAM if a parameter has an incorrect value,
o For other negative errors, please refer to the BUS API chapter of the

Open AT® Basic Development Guide.

3.8.5 The adl_busWrite function

This function writes on a previously subscribed bus.

• Prototype

s8 adl_busWrite (u8 Handle,
 adl_busAccess_t * pAccessMode,
 u32 DataLen,
 void * Data);

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 79 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Parameters

Handle:
Handle previously returned by adl_busSubscribe function.

pAccessMode:
Bus access mode, defined with the following type:
typedef struct
{
 u32 Address;
 u32 Opcode;
 u8 OpcodeLength;
 u8 AddressLength;
 u8 AccessSize; (reserved for future products)
} adl_busAccess_t;

This parameter is processed differently according to bus type:

• For SPI bus:
o For Q24X3 and P32X3 products:
one byte can be sent via the Opcode parameter (only the LSByte is
used; if OpcodeLength is less than 8 bits, only the MSBits of the
LSByte are used),

two bytes can be sent via the Address parameter (only the two
LSBytes are used; if OpcodeLength is less than 24 bits, only the
MSBits of the two LSBytes are used),

the OpcodeLength is the sum of Opcode and Address lengths in bits

(if OpcodeLength is 0, nothing is sent;
if OpcodeLength < 9, just Opcode is sent;
if 8 < OpcodeLength < 25, Opcode then Address are sent),

the AddressLength parameter is not used.

For Q24X6, Q2400 P32X6, Q24 Classic, Q24 Plus, Q24 Extended
and Q24 Auto products:

Up to 32 bits can be sent via the Opcode parameter, according to
the OpcodeLength parameter (in bits).
if OpcodeLength is less than 32 bits, only MSBits are used.

Up to 32 bits can be sent via the Address parameter, according to
the AddressLength parameter (in bits).
if AddressLength is less than 32 bits, only MSBits are used.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 80 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• For I2C Soft bus:
Not used, this parameter should be NULL.

• For I2C hard bus:
Not used, this parameter should be NULL.

• For Parallel bus:
Only the Address parameter is used.
This parameter is used to set the A2 pin value; it can be set to
following values:
WM_BUS_PARA_ADDRESS_A2_SET, to set the A2 pin;
WM_BUS_PARA_ADDRESS_A2_RESET, to reset the A2 pin

DataLen:
Number of bytes to write on the bus.
²
Data:
Data buffer to write on the bus.

• Returned values

OK on success.
ADL_RET_ERR_UNKNOWN_HDL if the handle provided is unknown,
ADL_RET_ERR_PARAM if a parameter has an incorrect value,
For other negative errors, please refer to the BUS API chapter of the Open AT®
Basic Development Guide.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 81 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.9 Errors management

3.9.1 Required Header File

The header file for the error functions is:
adl_errors.h

3.9.2 The adl_errSubscribe function

This function subscribes to the managemant service and gives an error handler: this
allows the application to handle errors generated by ADL or by the adl_errHalt
function. Errors generated by the Wavecom Core Software cannot be handled by
such an error handler.

• Prototype

s8 adl_errSubscribe (adl_errHdlr_f Handler);

• Parameters

Handler:
Error Handler, defined on following type:

typedef bool (* adl_errHdlr_f) (u16 ErrorID, ascii * ErrorStr);

An error is described by an Id and a string (associated text), that are sent as
parameters to the adl_errHalt function.

If the error is processed and filtered the handler should return FALSE. The
return value TRUE will cause the product to execute a fatal error reset with a
backtrace.
A backtrace is composed of the message provided, and a call stack “footprint”
taken at the function call time. It is readable by the Target Monitoring Tool
(Please refer to the Tools Manual for more information).

Note that ErrorIDs below 0x0100 are for internal purposes so the application
should only use ErrorIDs above 0x0100.

ADL may generates errors which will be handled by an error handler:

ErrorID ADL function Cause

ADL_ERR_MEM_GET adl_memGet The product ran out of heap memory, or
the heap memory is composed of free
blocks smaller than the required size.

ADL_ERR_MEM_RELEASE adl_memRelease The pointer provided was not provided
by the adl_memGet function, or it was
already released.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 82 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

ErrorID ADL function Cause
ADL_ERR_IO_ALLOCATE adl_ioSubscribe Abnormal error on Gpio subscription:

should be reported to Wavecom support.

ADL_ERR_IO_RELEASE adl_ioUnsubscribe Abnormal error on Gpio unsubscription:
should be reported to Wavecom support.

ADL_ERR_IO_READ adl_ioRead Abnormal error on Gpio read: should be
reported to Wavecom support.

ADL_ERR_IO_WRITE adl_ioWrite Abnormal error on Gpio write: should be
reported to Wavecom support.

ADL_ERR_FLH_READ adl_flhRead Abnormal error on Flash object read:
should be reported to Wavecom support.

ADL_ERR_FLH_DELETE adl_flhErase Abnormal error on Flash object erasure:
should be reported to Wavecom support.

• Returned values

o OK on success.
o ADL_RET_ERR_PARAM if the parameter has an incorrect value
o ADL_RET_ERR_ALREADY_SUBSCRIBED if the service is already

subscribed

• Returned values

The reboot is performed once the handler has returned TRUE. In order to
ensure the downloading of a new binary file after a fatal error has been
detected, the Open AT® application software startup is performed after a 20-
second delay.
Therefore, in order not to miss any event, any application has to handle the
case of a startup delay of 20 seconds.
Moreover, if the product reset is due to a fatal error (from Open AT®
application, or from Wavecom Core Software), the adl_main function’s
adlInitType parameter will be set to the ADL_INIT_REBOOT_FROM_EXCEPTION value.

3.9.3 The adl_errUnsubscribe function

This function unsubscribes from Management service. Errors generated by ADL or by
the adl_errHalt function will no longer be handled by the error handler.

• Prototype

s8 adl_errUnsubscribe (adl_errHdlr_f Handler);

• Parameters

Handler:
Handler returned by adl_errSubscribe function

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 83 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Returned values

o OK on success.
o ADL_RET_ERR_PARAM if the parameter has an incorrect value
o ADL_RET_ERR_UNKNOWN_HDL if the handler provided is unknown
o ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed

3.9.4 The adl_errHalt function

This function causes an error, defined by its ID and string. If an error handler is
defined, it will be called, otherwise a product reset will occur.

• Prototype

• void adl_errHalt (u16 ErrorID
 const ascii * ErrorString);Parameters

ErrorID:
Error ID

ErrorString:
Error string to be provided to the error handler and to be stored in the resulting
backtrace if a fatal error is required.
Please note that only the string address is stored in the backtrace, so this
parameter must not be a pointer on a RAM buffer, but a constant string
pointer. Moreover, the string will only be correctly displayed if the current
application is still present in the module’s flash memory. If the application is
erased or modified, the string will not be correctly displayed when retrieving
the backtraces.

3.9.5 The adl_errEraseAllBacktraces function

Backtraces (caused by the adl_errHalt function, ADL or the Wavecom Core Software)
are stored in the product’s non-volatile memory. A limited number of backtraces may
be stored in memory (depending on each backtrace size, and other internal
parameters stored in the same storage place). The adl_errEraseAllBacktraces
function allows this storage place to be freed and re-initialized.

• Prototype

void adl_errEraseAllBacktraces (void);

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 84 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.9.6 The adl_errStartBacktraceAnalysis function

In order to retrieve backtraces from product memory, a backtrace analysis process
has to be started with the adl_errStartBacktraceAnalysis function.

• Prototype

s8 adl_errStartBacktraceAnalysis (void);

• Returned values

o A positive or null handle on success. This handle must be used in the
next adl_errRetrieveNextBacktrace function call. It will be valid until this
function returns a ADL_RET_ERR_DONE code.

o ADL_RET_ERR_ALREADY_SUBSCRIBED if a backtrace analysis is already
running.

o ERROR if an unexpected internal error occurred.

• Note

Only one analysis may be running at a time. The adl_errStartBacktraceAnalysis
function will return the ADL_RET_ERR_ALREADY_SUBSCRIBED error code if it is
called while an analysis is currently running.

3.9.7 The adl_errGetAnalysisState function

This function may be used in order to know the current backtrace analysis process
state.

• Prototype

adl_errAnalysisState_e adl_errGetAnalysisState (void);

• Returned values

Current backtrace analysis state, which uses the type below:

typedef enum
{
 ADL_ERR_ANALYSIS_STATE_IDLE, // No running analysis
 ADL_ERR_ANALYSIS_STATE_RUNNING // An analysis is running
} adl_errAnalysisState_e;

3.9.8 The adl_errRetrieveNextBacktrace function

This function allows the application to retrieve the next backtrace buffer stored in the
product memory. The backtrace analysis may have been first started with the
adl_errStartBacktraceAnalysis function.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 85 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Prototype

s32 adl_errRetrieveNextBacktrace (u8 Handle
 u8 * BacktraceBuffer
 u16 Size);

• Parameters

Handle:
Backtrace analysis handle, returned by the adl_errStartBacktraceAnalysis
function.

BacktraceBuffer:
Buffer in which the next retrieved backtrace will be copied. This parameter may
be set to NULL in order to know the required size of the next backtrace buffer.

Size:
Backtrace buffer size. If this size is not large enough, the
ADL_RET_ERR_PARAM error code will be returned.

• Returned values

o OK if the next stored backtrace was successfully copied in the
BacktraceBuffer parameter.

o The required size for the next backtrace buffer if the BacktraceBuffer
parameter is set to NULL.

o ADL_RET_ERR_PARAM if the provided Size parameter is not large
enough.

o ADL_RET_ERR_NOT_SUBSCRIBED if the adl_errStartBacktraceAnalysis
function was not called before.

o ADL_RET_ERR_UNKNOWN_HDL if the provided Handle parameter is
invalid.

o ADL_RET_ERR_DONE if the last backtrace buffer has already been
retrieved. The Handle parameter will now be unsubscribed and not
usable any more with the adl_errRetrieveNextBacktrace function. A new
analysis has to be started with the adl_errStartBacktraceAnalysis
function.

• Note

Once retrieved, the backtrace buffers may be stored (separately or concatenated),
in order to be sent (using the application’s protocol/bearer choice) to a remote
server or PC. Once retrieved as one or several files on a PC, this(these) may be
read using the Target Monitoring Tool and the Serial Link Manager in order to
decode the backtrace buffer(s). Please refer to the Tools Manual in order to know
how to process these files.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 86 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.10 SIM Service

ADL provides this service to handle SIM and PIN code related events.

3.10.1 Required Header File

The header file for the SIM related functions is:
adl_sim.h

3.10.2 The adl_simSubscribe function

This function subscribes to the SIM service, in order to receive SIM and PIN code
related events. This will allow PIN code (if provided) to be entered if necessary.

• Prototype

void adl_simSubscribe (adl_simHdlr_f SimHandler,
 ascii * PinCode);

• Parameters

SimHandler:
SIM handler defined using the following type:

typedef void (* adl_simHdlr_f) (u8 Event);

The events received by this handler are defined below.
Normal events:

ADL_SIM_EVENT_PIN_OK
if PIN code is all right

ADL_SIM_EVENT_REMOVED
if SIM card is removed

ADL_SIM_EVENT_INSERTED
if SIM card is inserted

ADL_SIM_EVENT_FULL_INIT
when initialization is done

Error events:
ADL_SIM_EVENT_PIN_ERROR

if given PIN code is wrong
ADL_SIM_EVENT_PIN_NO_ATTEMPT

if there is only one attempt left to entered the right PIN code
ADL_SIM_EVENT_PIN_WAIT

if the argument PinCode is set to NULL
On the last three events, the service is waiting for the external
application to enter the PIN code.
Please note that the deprecated ADL_SIM_EVENT_ERROR event has been
removed since ADL version 3. This code was mentioned in the version 2
documentation, but was never generated by the SIM service.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 87 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

PinCode:
This is a string containing the PIN code text to enter. If it is set to NULL or if the
code provided is incorrect, the PIN code will have to be entered by the external
application.
This argument is used only the first time the service is subscribed. It is ignored
on all further subscriptions.

3.10.3 The adl_simUnsubscribe function

This function unsubscribes from SIM service. The handler provided will no longer
receive SIM events.

• Prototype

void adl_simUnsubscribe (adl_simHdlr_f Handler)

• Parameters

Handler:
Handler used with adl_SimSubscribe function.

3.10.4 The adl_simGetState function

This function gets the current SIM service state.

• Prototype
void adl_simState_e adl_simGetState (void);

• Returned values

The returned value is the SIM service state, based on following type:

typedef enum
{

ADL_SIM_STATE_INIT, // Service init state (PIN state not known yet)
ADL_SIM_STATE_REMOVED, // SIM removed
ADL_SIM_STATE_INSERTED, // SIM inserted (PIN state not known yet)
ADL_SIM_STATE_FULL_INIT, // SIM Full Init done
ADL_SIM_STATE_PIN_ERROR, // SIM error state
ADL_SIM_STATE_PIN_OK, // PIN code OK, waiting for full init
ADL_SIM_STATE_PIN_WAIT, // SIM inserted, PIN code not entered yet

/* Always last State */
ADL_SIM_STATE_LAST

} adl_simState_e;

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 88 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.11 SMS Service

ADL provides this service to handle SMS events, and to send SMS to the network.

3.11.1 Required Header File

The header file for the SMS related functions is:
adl_sms.h

3.11.2 The adl_smsSubscribe function

This function subscribes to the SMS service in order to receive SMSs from the
network.

• Prototype

s8 adl_smsSubscribe (adl_smsHdlr_f SmsHandler,
 adl_smsCtrlHdlr_f SmsCtrlHandler,
 u8 Mode);

• Parameters

SmsHandler:
SMS handler defined using the following type:

typedef bool (* adl_smsHdlr_f) (ascii * SmsTel,

 ascii * SmsTimeLength,
 ascii * SmsText);

This handler is called each time a SMS is received from the network.
SmsTel contains the originating telephone number of the SMS (in text mode),
or NULL (in PDU mode).
SmsTimeLength contains the SMS time stamp (in text mode), or the PDU
length (in PDU mode).
SmsText contains the SMS text (in text mode), or the SMS PDU (in PDU mode).
This handler returns TRUE if the SMS must be forwarded to the external
application (it is then stored in SIM memory, and the external application is
then notified by a “+CMTI” unsolicited indication).
It returns FALSE if the SMS should not be forwarded.
If the SMS service is subscribed several times, a received SMS will be
forwarded to the external application only if each of the handlers return TRUE.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 89 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

SmsCtrlHandler:
SMS event handler, defined using the following type:

typedef void (* adl_smsCtrlHdlr_f) (u8 Event, u16 Nb);

This handler is notified by the following events during an SMS sending
process.

ADL_SMS_EVENT_SENDING_OK
the SMS was sent successfully, Nb parameter value is not
relevant.

ADL_SMS_EVENT_SENDING_ERROR
An error occurred during SMS sending, Nb parameter contains the
error number, according to “+CMS ERROR” value (cf. AT
Commands Interface Guide).

ADL_SMS_EVENT_SENDING_MR
the SMS was sent successfully, Nb parameter contains the sent
Message Reference value. A ADL_SMS_EVENT_SENDING_OK event
will be received by the control handler.

Mode:
Mode used for SMS reception from the following values:

ADL_SMS_MODE_PDU
SmsHandler will be called in PDU mode on each SMS reception.

ADL_SMS_MODE_TEXT
SmsHandler will be called in Text mode on each SMS reception.

• Returned values

o On success, this function returns a positive or null handle, requested for
further SMS sending operations.

o ADL_RET_ERR_PARAM if a parameter has a wrong value.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 90 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.11.3 The adl_smsSend function

This function sends a SMS to the network.

• Prototype

s8 adl_smsSend (u8 Handle,
 ascii * SmsTel,
 ascii * SmsText,
 u8 Mode);

• Parameters

Handle:
Handle returned by adl_smsSubscribe function.

SmsTel:
Telephone number to which the SMS is to be sent (in text mode), or NULL (in
PDU mode).

SmsText:
SMS text (in text mode), or SMS PDU (in PDU mode).

Mode:
Mode used for SMS sending from the following values:

ADL_SMS_MODE_PDU
to send a SMS in PDU mode.

ADL_SMS_MODE_TEXT
to send a SMS in Text mode.

• Returned values

o This function returns OK on success.
o ADL_RET_ERR_PARAM if a parameter has a wrong value.
o ADL_RET_ERR_UNKNOWN_HDL if the handle provided is unknown.
o ADL_RET_ERR_BAD_STATE if the product is not ready to send a SMS

(initialization not yet performed, or SMS sending already in progress)

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 91 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.11.4 The adl_smsUnsubscribe function

This function unsubscribes from the SMS service. The associated handler with the
handle provided will no longer receive SMS events.

• Prototype

s8 adl_smsUnsubscribe (u8 Handle)

• Parameters

Handle:
Handle returned by adl_smsSubscribe function.

• Returned values

o OK on success.
o ADL_RET_ERR_UNKNOWN_HDL if the handler provided is unknown.
o ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed.
o ADL_RET_ERR_BAD_STATE if the service is processing a SMS

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 92 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.12 Call Service

ADL provides this service to handle call-related events, and to setup calls.

3.12.1 Required Header File

The header file for the call related functions is:
adl_call.h

3.12.2 The adl_callSubscribe function

This function subscribes to the call service in order to receive call-related events.

• Prototype

s8 adl_callSubscribe (adl_callHdlr_f CallHandler);

• Parameters

CallHandler:
Call handler defined using the following type:

typedef s8 (* adl_callHdlr_f) (u16 Event, u32 Call_ID);

The pairs events / call Id received by this handler are defined below ; each
event is received according to an “event type”, which can be :

o MO (Mobile Originated call-related event)
o MT (Mobile Terminated call-related event)
o CMD (Incoming AT command-related event)

Event / Call ID Description Type

ADL_CALL_EVENT_RING_VOICE / 0 if voice phone call MT

ADL_CALL_EVENT_RING_DATA / 0 if data phone call MT

ADL_CALL_EVENT_NEW_ID / X if wind: 5,X MO

ADL_CALL_EVENT_RELEASE_ID / X if wind: 6,X; on data call release, X is
a logical OR between the Call ID and
the ADL_CALL_DATA_FLAG constant

MO
MT

ADL_CALL_EVENT_ALERTING / 0 if wind: 2 MO

ADL_CALL_EVENT_NO_CARRIER / 0 phone call failure, ‘NO CARRIER’ MO
MT

ADL_CALL_EVENT_NO_ANSWER / 0 phone call failure, no answer MO

ADL_CALL_EVENT_BUSY / 0 phone call failure, busy MO

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 93 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Event / Call ID Description Type

ADL_CALL_EVENT_SETUP_OK / Speed ok response after a call setup
performed by the adl_callSetup
function; in data call setup case, the
connection <Speed> (in bits/second)
is also provided.

MO

ADL_CALL_EVENT_ANSWER_OK /
Speed

ok response after an
ADL_CALL_NO_FORWARD_ATA
request from a call handler; in data
call answer case, the connection
<Speed> (in bps) is also provided

MT

ADL_CALL_EVENT_HANGUP_OK / Data ok response after a
ADL_CALL_NO_FORWARD_ATH
request, or a call hangup performed
by the adl_callHangup function; on
data call release, Data is the
ADL_CALL_DATA_FLAG constant (0
on voice call release)

MO
MT

ADL_CALL_EVENT_SETUP_OK_FROM_
EXT / Speed

ok response after an ‘ATD’ command
from the external application; in data
call setup case, the connection
<Speed> (in bits/second) is also
provided.

MO

ADL_CALL_EVENT_ANSWER_OK_FRO
M_EXT / Speed

ok response after an ‘ata’ command
from the external application; in data
call answer case, the connection
<Speed> (in bps) is also provided

MT

ADL_CALL_EVENT_HANGUP_OK_FRO
M_EXT / Data

ok response after an ‘ATH’ command
from the external application; on data
call release, Data is the
ADL_CALL_DATA_FLAG constant (0
on voice call release)

MO
MT

ADL_CALL_EVENT_AUDIO_OPENNED /
0

if +WIND: 9 MO
MT

ADL_CALL_EVENT_ANSWER_OK_AUT
O / Speed

OK response after an auto-answer to
an incoming call (ATS0 command
was set to a non-zero value); in data
call answer case, the connection
<Speed> (in bps) is also provided

MT

ADL_CALL_EVENT_RING_GPRS / 0 if GPRS phone call MT

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 94 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Event / Call ID Description Type

ADL_CALL_EVENT_SETUP_FROM_EXT
/ Mode

if the external application has used
the 'ATD' command to set up a call.
Mode value depends on call type
(Voice: 0, GSM Data:
ADL_CALL_DATA_FLAG, GPRS
session activation: binary OR
between ADL_CALL_GPRS_FLAG
constant and the activated CID).
According to the notified handlers
return values, call setup may be
launched or not: if at least one
handler returns the
ADL_CALL_NO_FORWARD code (or
higher), the command will reply
"+CME ERROR: 600" to the external
application; otherwise (if all handlers
return ADL_CALL_FORWARD), the call
setup is launched.

CMD

ADL_CALL_EVENT_CIEV OK response after a call setup was
performed

MO

ADL_CALL_EVENT_SETUP_ERROR_NO
_SIM / 0

A call setup (from embedded or
external application) has failed (no
SIM card inserted)

MO

ADL_CALL_EVENT_SETUP_ERROR_PIN
_NOT_READY / 0

A call setup (from embedded or
external application) has failed (the
PIN code is not entered)

MO

ADL_CALL_EVENT_SETUP_ERROR /
Error

A call setup (from embedded or
external application) has failed (the
<Error> field is the returned +CME
ERROR value; cf. AT Commands
interface guide for more information)

MO

The events returned by this handler are defined below:

Event Description

ADL_CALL_FORWARD the call event shall be sent to the external
application
On unsolicited events, these will be forwarded
to all opened ports.
On responses events, these will be forwarded
only on the port on which the request was
executed.

ADL_CALL_NO_FORWARD the call event shall not be sent to the external
application

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 95 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Event Description

ADL_CALL_NO_FORWARD_ATH the call event shall not be sent to the external
application and the application shall terminate
the call by sending an ‘ATH’ command.

ADL_CALL_NO_FORWARD_ATA the call event shall not be sent to the external
application and the application shall answer the
call by sending an ‘ATA’ command.

• Returned values

o OK on success
o ADL_RET_ERR_PARAM on parameter error

3.12.3 The adl_callSetup function

This function just runs the adl_callSetupExt one on the
ADL_PORT_OPEN_AT_VIRTUAL_BASE port (cf. adl_callSetupExt description for more
information). Please note that events generated by the adl_callSetup will not be able
to be forwarded to any external port, since the setup command was running on the
Open AT® port.

3.12.4 The adl_callSetupExt function

This function sets up a call to a specified phone number.

• Prototype

s8 adl_callSetupExt (ascii * PhoneNb,
 u8 Mode,
 adl_port_e Port);

• Parameters

PhoneNb:
Phone number to use to set up the call.

Mode:
Mode used to set up the call:
ADL_CALL_MODE_VOICE,
ADL_CALL_MODE_DATA

Port:
Port on which to run the call setup command. When setup return events are
received in the Call event handler, if the application requires ADL to forward
these events, they will be forwarded to this Port parameter value.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 96 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Returned values

o OK on success
o ADL_RET_ERR_PARAM on parameter error (bad value, or unavailable

port)

3.12.5 The adl_callHangup function

This function just runs the adl_callHangupExt one on the
ADL_PORT_OPEN_AT_VIRTUAL_BASE port (cf. adl_callHangupExt description for more
information). Please note that events generated by the adl_callHangup will not be able
to be forwarded to any external port, since the setup command was running on the
Open AT® port.

3.12.6 The adl_callHangupExt function

This function hangs up the phone call.

• Prototype

s8 adl_callHangupExt (adl_port_e Port);

• Parameters

Port:
Port on which to run the call hang-up command. When hang-up return events
are received in the Call event handler, if the application requires ADL to forward
these events, they will be forwarded to this Port parameter value.

• Returned values

o OK on success
o ADL_RET_ERR_PARAM on parameter error (unavailable port)

3.12.7 The adl_callAnswer function

This function just runs the adl_callAnswerExt one on the
ADL_PORT_OPEN_AT_VIRTUAL_BASE port (cf. adl_callAnswerExt description for more
information). Please note that events generated by the adl_callAnswer will not be able
to be forwarded to any external port, since the setup command was running on the
Open AT® port.

3.12.8 The adl_callAnswerExt function

This function allows the application to answer a phone call out of the call events
handler.

• Prototype

s8 adl_callAnswerExt (adl_port_e Port);

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 97 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Parameters

Port:
Port on which to run the call hang-up command. When hang-up return events
are received in the Call event handler, if the application requires ADL to forward
these events, they will be forwarded to this Port parameter value.

• Returned values

o OK on success
o ADL_RET_ERR_PARAM on parameter error (unavailable port)

3.12.9 The adl_callUnsubscribe function

This function unsubscribes from the Call service. The handler provided will no longer
receive Call events.

• Prototype

s8 adl_callUnsubscribe (adl_callHdlr_f Handler);

• Parameters

Handler:
Handler used with adl_callSubscribe function.

• Returned values

o OK on success
o ADL_RET_ERR_PARAM on parameter error
o ADL_RET_ERR_UNKNOWN_HDL if the handler provided is unknown
o ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 98 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.13 GPRS Service

ADL provides this service to handle GPRS related events and to set up, activate and
deactivate PDP contexts.

3.13.1 Required Header File

The header file for the GPRS related functions is:
adl_gprs.h

3.13.2 The adl_gprsSubscribe function

This function subscribes to the GPRS service in order to receive GPRS related events.

• Prototype

s8 adl_gprsSubscribe (adl_gprsHdlr_f GprsHandler);

• Parameters

GprsHandler:
GPRS handler defined using the following type:

typedef s8 (*adl_gprsHdlr_f)(u16 Event, u8 Cid);

The pairs events/Cid received by this handler are defined below:

Event / Call ID Description

ADL_GPRS_EVENT_RING_GPRS If incoming PDP context activation
is requested by the network

ADL_GPRS_EVENT_NW_CONTEXT_DEACT / X If the network has forced the
deactivation of the Cid X

ADL_GPRS_EVENT_ME_CONTEXT_DEACT / X If the ME has forced the
deactivation of the Cid X

ADL_GPRS_EVENT_NW_DETACH If the network has forced the
detachment of the ME

ADL_GPRS_EVENT_ME_DETACH If the ME has forced a network
detachment or lost the network

ADL_GPRS_EVENT_NW_CLASS_B If the network has forced the ME on
class B

ADL_GPRS_EVENT_NW_CLASS_CG If the network has forced the ME on
class CG

ADL_GPRS_EVENT_NW_CLASS_CC If the network has forced the ME on
class CC

ADL_GPRS_EVENT_ME_CLASS_B If the ME has changed his class to
class B

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 99 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Event / Call ID Description

ADL_GPRS_EVENT_ME_CLASS_CG If the ME has changed his class to
class CG

ADL_GPRS_EVENT_ME_CLASS_CC If the ME has changed his class to
class CC

ADL_GPRS_EVENT_NO_CARRIER If the activation of the external
application with ‘ATD*99’ (PPP
dialing) did hang up.

ADL_GPRS_EVENT_DEACTIVATE_OK / X If the deactivation requested with
adl_gprsDeact() function did
succeed on the Cid X

ADL_GPRS_EVENT_DEACTIVATE_OK_FROM_EXT
/ X

If the deactivation requested by the
external application succeed on the
Cid X

ADL_GPRS_EVENT_ANSWER_OK If the acceptance of the incoming
PDP activation with adl_gprsAct()
did succeed

ADL_GPRS_EVENT_ANSWER_OK_FROM_EXT If the acceptance of the incoming
PDP activation by the external
application did succeed

ADL_GPRS_EVENT_ACTIVATE_OK / X If the activation requested with
adl_gprsAct() on the Cid X did
succeed

ADL_GPRS_EVENT_GPRS_DIAL_OK_FROM_EXT /
X

If the activation requested by the
external application with ‘ATD*99’
(PPP dialing) did succeed on the Cid
X

ADL_GPRS_EVENT_ACTIVATE_OK_FROM_EXT /
X

If the activation requested by the
external application on the Cid X did
succeed

ADL_GPRS_EVENT_HANGUP_OK_FROM_EXT If the rejection of the incoming PDP
activation by the external
application did succeed

ADL_GPRS_EVENT_DEACTIVATE_KO / X If the deactivation requested with
adl_gprsDeact() on the Cid X did fail

ADL_GPRS_EVENT_DEACTIVATE_KO_FROM_EXT
/ X

If the deactivation requested by the
external application on the Cid X did
fail

ADL_GPRS_EVENT_ACTIVATE_KO_FROM_EXT /
X

If the activation requested by the
external application on the Cid X did
fail

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 100 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Event / Call ID Description

ADL_GPRS_EVENT_ACTIVATE_KO / X If the activation requested with
adl_gprsAct() on the Cid X did fail

ADL_GPRS_EVENT_ANSWER_OK_AUTO If the incoming PDP context
activation was automatically
accepted by the ME

ADL_GPRS_EVENT_SETUP_OK / X If the set up of the Cid X with
adl_gprsSetup() did succeed

ADL_GPRS_EVENT_SETUP_KO / X If the set up of the Cid X with
adl_gprsSetup() did fail

ADL_GPRS_EVENT_ME_ATTACH If the ME has forced a network
attachment

ADL_GPRS_EVENT_ME_UNREG If the ME is not registered

ADL_GPRS_EVENT_ME_UNREG_SEARCHING If the ME is not registered but is
searching a new operator to register
to.

Note: If Cid X is not defined, the value ADL_CID_NOT_EXIST will be used as X.

The possible return values for this handler are defined below:

Event Description

ADL_GPRS_FORWARD the event shall be sent to the external
application.
On unsolicited events, these will be forwarded
to all opened ports.
On responses events, these will be forwarded
only on the port on which the request was
executed.

ADL_GPRS_NO_FORWARD the event shall not be sent to the external
application

ADL_GPRS_NO_FORWARD_ATH the event shall not be sent to the external
application and the application shall terminate
the incoming activation request by sending an
‘ATH’ command.

ADL_GPRS_NO_FORWARD_ATA the event shall not be sent to the external
application and the application shall accept the
incoming activation request by sending an
‘ATA’ command.

• Returned values for adl_gprsSubscribe

This function returns OK on success, or a negative error value.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 101 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Possible error values are:

Error value Description

ADL_RET_ERR_PARAM In case of parameter error

3.13.3 The adl_gprsSetup function

This function just runs the adl_gprsSetupExt one on the
ADL_PORT_OPEN_AT_VIRTUAL_BASE port (cf. adl_gprsSetupExt description for more
information). Please note that events generated by the adl_gprsSetup will not be able
to be forwarded to any external port, since the setup command was running on the
Open AT® port.

3.13.4 The adl_gprsSetupExt function

This function sets up a PDP context identified by its CID with some specific
parameters.

• Prototype

s8 adl_gprsSetupExt (u8 Cid,
 adl_gprsSetupParams_t Params,
 adl_port_e Port);

• Parameters

Cid:
The Cid of the PDP context to set up (integer value between 1 and 4).

Params:
Structure containing the parameters to set up using the following type:

typedef struct
{

 ascii* APN; ascii* Login;
 ascii* Password;
 ascii* FixedIP;
 bool HeaderCompression;
 bool DataCompression;
} adl_gprsSetupParams_t;

o APN:
Address of the Provider GPRS Gateway (GGSN)
maximum 100 bytes string

o Login:
GPRS account login
maximum 50 bytes string

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 102 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

o Password:
GPRS account password
maximum 50 bytes string

o FixedIP:
Optional fixed IP address of the MS (used only if not set to NULL)
maximum 15 bytes string

o HeaderCompression:
PDP header compression option (enabled if set to TRUE)

o DataCompression:
PDP data compression option (enabled if set to TRUE)

Port:
Port on which to run the PDP context setup command. When setup return
events are received in the GPRS event handler, if the application requires ADL
to forward these events, they will be forwarded to this Port parameter value.

• Returned values

This function returns OK on success, or a negative error value.
Possible error values are:

Error value Description

ADL_RET_ERR_PARAM In case of parameter error: bad Cid value or
unavailable port.

ADL_RET_ERR_PIN_KO If the PIN is not entered, or if the “+WIND:4”
indication has not occurred yet.

ADL_GPRS_CID_NOT_DEFINED in case of problem to set up the Cid (the CID is
already activated)

ADL_NO_GPRS_SERVICE f the GPRS service is not supported by the
product.

ADL_RET_ERR_BAD_STATE The service is still processing another GPRS
API; application should wait for the
corresponding event (indication of end of
processing) in the GPRS handler before calling
this function.

3.13.5 The adl_gprsAct function

This function just runs the adl_gprsActExt one on the ADL_PORT_OPEN_AT_VIRTUAL_BASE
port (cf. adl_gprsActExt description for more information). Please note that events
generated by the adl_gprsAct will not be able to be forwarded to any external port,
since the setup command was running on the Open AT® port.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 103 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.13.6 The adl_gprsActExt function

This function activates a specific PDP context identified by its Cid.

• Prototype

s8 adl_gprsActExt (u8 Cid,
 adl_port_e Port);

• Parameters

Cid:
The Cid of the PDP context to activate (integer value between 1 and 4).

Port:
Port on which to run the PDP context activation command. When activation
return events are received in the GPRS event handler, if the application requires
ADL to forward these events, they will be forwarded to this Port parameter
value.

• Returned values

This function returns OK on success, or a negative error value.

Possible error values are:

Error value Description

ADL_RET_ERR_PARAM in case of parameters error: bad Cid value or
unavailable port

ADL_RET_ERR_PIN_KO If the PIN is not entered, or if the “+WIND:4”
indication has not occurred yet.

ADL_GPRS_CID_NOT_DEFINED in case of problem to set up the Cid (the CID is
already activated)

ADL_NO_GPRS_SERVICE f the GPRS service is not supported by the
product.

ADL_RET_ERR_BAD_STATE The service is still processing another GPRS
API; application should wait for the
corresponding event (indication of end of
processing) in the GPRS handler before calling
this function.

Important Note: This function must be called before opening the GPRS FCM
Flows.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 104 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.13.7 The adl_gprsDeact function

This function just runs the adl_gprsDeactExt one on the
ADL_PORT_OPEN_AT_VIRTUAL_BASE port (cf. adl_gprsDeactExt description for more
information). Please note that events generated by the adl_gprsDeact will not be able
to be forwarded to any external port, since the setup command was running on the
Open AT® port.

3.13.8 The adl_gprsDeactExt function

This function deactivates a specific PDP context identified by its Cid.

• Prototype

s8 adl_gprsDeactExt (u8 Cid
 adl_port_e Port);

• Parameters

Cid:
The Cid of the PDP context to deactivate (integer value between 1 and 4).

Port:
Port on which to run the PDP context deactivation command. When
deactivation return events are received in the GPRS event handler, if the
application requires ADL to forward these events, they will be forwarded to this
Port parameter value.

• Returned values

This function returns OK on success, or a negative error value.

Possible error values are:

Error value Description

ADL_RET_ERR_PARAM in case of parameters error: bad Cid value
or unavailable port.

ADL_RET_ERR_PIN_KO If the PIN is not entered, or if the
“+WIND:4” indication has not occurred
yet.

ADL_GPRS_CID_NOT_DEFINED in case of problem to set up the Cid (the
CID is already activated)

ADL_NO_GPRS_SERVICE f the GPRS service is not supported by the
product.

ADL_RET_ERR_BAD_STATE The service is still processing another
GPRS API; application should wait for the
corresponding event (indication of end of
processing) in the GPRS handler before
calling this function.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 105 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

IMPORTANT NOTE: if the GPRS flow is running, please do wait for the
ADL_FCM_EVENT_FLOW_CLOSED event before calling the adl_gprsDeact function, in
order to prevent module lock.

3.13.9 The adl_gprsGetCidInformations function

This function gets information about a specific activated PDP context identified by its
Cid.

• Prototype

s8 adl_gprsGetCidInformations (u8 Cid,
 adl_gprsInfosCid_t * Infos);

• Parameters

Cid:
The Cid of the PDP context (integer value between 1 and 4).

Infos:
Structure containing the information of the activated PDP context using the
following type:

typedef struct
{
 u32 LocalIP; // Local IP address of the MS
 u32 DNS1; // First DNS IP address
 u32 DNS2; // Second DNS IP address
 u32 Gateway; // Gateway IP address
}adl_gprsInfosCid_t;

This parameter fields will be set only if the GPRS session is activated;
otherwise, they all will be set to 0.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 106 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Returned values

This function returns OK on success, or a negative error value.
Possible error values are:

Error value Description

ADL_RET_ERR_PARAM in case of parameters error: bad Cid value

ADL_RET_ERR_PIN_KO If the PIN is not entered, or if the
“+WIND:4” indication has not occurred
yet.

ADL_GPRS_CID_NOT_DEFINED in case of problem to set up the Cid (the
CID is already activated)

ADL_NO_GPRS_SERVICE f the GPRS service is not supported by the
product.

ADL_RET_ERR_BAD_STATE The service is still processing another
GPRS API; application should wait for the
corresponding event (indication of end of
processing) in the GPRS handler before
calling this function.

3.13.10 The adl_gprsUnsubscribe function

This function unsubscribes from the GPRS service. The handler provided will not
receive GPRS events any more.

• Prototype

s8 adl_gprsUnsubscribe (adl_gprsHdlr_f Handler);

• Parameters

Handler:
Handler used with adl_gprsSubscribe function.

• Returned values

This function returns OK on success, or a negative error value.
Possible error values are:

Error value Description

ADL_RET_ERR_PARAM in case of parameters error

ADL_RET_ERR_UNKNOWN_HDL if the provided handler is unknown

ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 107 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.13.11 The adl_gprsIsAnIPAddress function

This function checks if the provided string is a valid IP address. Valid IP address
strings are those based on the “a.b.c.d” format, where a, b, c & d are integer values
between 0 and 255.

• Prototype

bool adl_gprsIsAnIPAddress (ascii * AddressStr);

• Parameters

AddressStr:
IP address string to check.

• Returned values

This function returns TRUE if the string provided is a valid IP address string,
and FALSE otherwise.
NULL & empty string (“”) are not considered as a valid IP address.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 108 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.13.12 Example

This example simply demonstrates how to use the GPRS service in a nominal case
(error cases are not handled).

Full examples using the GPRS service are also available on the SDK (Ping_GPRS
sample).

// Global variables & constants
adl_gprsSetupParams_t MyGprsSetup;
adl_gprsInfosCid_t InfosCid;

// GRPS event Handler
s8 MyGprsEventHandler (u16 Event, u8 CID)
{

 // Trace event
 TRACE ((1, “Received GPRS event %d/%d”, Event, CID));

 // Switch on event
 switch (Event)
 {
 case ADL_GPRS_EVENT_SETUP_OK :
 TRACE ((1, "PDP Ctxt Cid %d Setup OK", CID));
 // Activate the session
 adl_gprsAct (1);
 break;

 case ADL_GPRS_EVENT_ACTIVATE_OK :
 TRACE ((1, "PDP Ctxt %d Activation OK", CID));
 // Get context information
 adl_gprsGetCidInformations (1, &InfosCid);
 // De-activate the session
 adl_gprsDeAct (1);
 }
 break;

 case ADL_GPRS_EVENT_DEACTIVATE_OK :
 TRACE ((1, " PDP Ctxt %d De-activation OK", CID));
 // Un-subscribe from GPRS event handler
 adl_gprsUnsubscribe (MyGprsEventHandler);
 break;
 }

 // Forward event
 return ADL_GPRS_FORWARD;
}

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 109 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

// Somewhere in the application code, used as an event handler
void MyFunction (void)

 // Subscribe to an A&D cell
 MyGprsSetup.APN = “myapn”;
 MyGprsSetup.Login = “login”;
 MyGprsSetup.Password = “password”;
 MyGprsSetup.FixedIP = NULL;
 MyGprsSetup.HeaderCompression = FALSE;
 MyGprsSetup.DataCompression = FALSE;

 // Subscribe to GPRS event handler
 adl_gprsSubscribe (MyGprsEventHandler);

 // Set up the GPRS context
 adl_gprsSetup (1, MyGprsSetup);
}

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 110 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.14 Application Safe Mode Service

By default, the +WOPEN and +WDWL commands cannot be filtered by any
embedded application. This service allows one application to get these command
events, in order to prevent any external application stopping or erasing the current
embedded one.

3.14.1 Required Header File

The header file for the Application safe mode service is:
adl_safe.h

3.14.2 The adl_safeSubscribe function

This function subscribes to the Application safe mode service in order to receive
+WOPEN and +WDWL command events.

• Prototype

s8 adl_safeSubscribe (u16 WDWLopt,
 u16 WOPENopt,
 adl_safeHdlr_f SafeHandler);

• Parameters

WDWLopt:
Additionnal options for +WDWL command subscription. This command is at
least subscribed in ACTION and READ mode. Please see adl_atCmdSubscribe
API for more details on these options.

WOPENopt:
Additionnal options for +WOPEN command subscription. This command is at
least subscribed in READ, TEST and PARAM mode, with at least one
mandatory parameter. Please see adl_atCmdSubscribe API for more details on
these options.

SafeHandler:
Application safe mode handler defined using the following type:

typedef bool (*adl_safeHdlr_f) (adl_safeCmdType_e CmdType,

 adl_atCmdPreParser_t * paras);

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 111 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

The CmdType events received by this handler are defined below:

typedef enum
{

ADL_SAFE_CMD_WDWL, // AT+WDWL command
ADL_SAFE_CMD_WDWL_READ, // AT+WDWL? command
ADL_SAFE_CMD_WDWL_OTHER, // WDWL other syntax

ADL_SAFE_CMD_WOPEN_STOP, // AT+WOPEN=0 command
ADL_SAFE_CMD_WOPEN_START, // AT+WOPEN=1 command
ADL_SAFE_CMD_WOPEN_GET_VERSION, // AT+WOPEN=2 command
ADL_SAFE_CMD_WOPEN_ERASE_OBJ, // AT+WOPEN=3 command
ADL_SAFE_CMD_WOPEN_ERASE_APP, // AT+WOPEN=4 command
ADL_SAFE_CMD_WOPEN_SUSPEND_APP, // AT+WOPEN=5 command
ADL_SAFE_CMD_WOPEN_AD_GET_SIZE, // AT+WOPEN=6 command
ADL_SAFE_CMD_WOPEN_AD_SET_SIZE, // AT+WOPEN=6,<size> command
ADL_SAFE_CMD_WOPEN_READ, // AT+WOPEN? command
ADL_SAFE_CMD_WOPEN_TEST, // AT+WOPEN=? command
ADL_SAFE_CMD_WOPEN_OTHER // WOPEN other syntax

} adl_safeCmdType_e;

The paras received structure contains the same parameters as if the
commands were subscribed with adl_atCmdSubscribe API.

If the Handler returns FALSE, the command will not be forwarded to the
Wavecom core software.
If the Handler returns TRUE, the command will be processed by the Wavecom
core software, which will send responses to the external application.

• Returned values

o OK on success.
o ADL_RET_ERR_PARAM if the parameters have an incorrect value
o ADL_RET_ERR_ALREADY_SUBSCRIBED if the service is already

subscribed

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 112 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.14.3 The adl_safeUnsubscribe function

This function unsubscribes from Application safe mode service. The +WDWL and
+WOPEN commands are no longer filtered and always processed by the Wavecom
core software.

• Prototype

s8 adl_safeUnsubscribe (adl_safeHdlr_f Handler);

• Parameters

Handler:
Handler used with adl_safeSubscribe function.

• Returned values

o OK on success.
o ADL_RET_ERR_PARAM if the parameter has an incorrect value
o ADL_RET_ERR_UNKNOWN_HDL if the provided handler is unknown
o ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 113 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.14.4 The adl_safeRunCommand function

This function allows to run +WDWL or +WOPEN command with any standard
syntax, and to get its answers.

• Prototype

s8 adl_safeRunCommand (adl_safeCmdType_e CmdType,
 adl_atRspHandler_t RspHandler);

• Parameters

CmdType:
Command type to run; please refer to adl_safeSubscribe description.
ADL_SAFE_CMD_WDWL_OTHER and ADL_SAFE_CMD_WOPEN_OTHER values
are not allowed.
The ADL_SAFE_CMD_WOPEN_SUSPEND_APP may be used to suspend the
Open AT® application task. The execution may be resumed using the
AT+WOPENRES command, or by sending a signal on the hardware Interrupt
product pin (The INTERRUPT feature has to be enabled on the product: please
refer to the AT+WFM command). Open AT® application running in Remote
Task Environment cannot be suspended (the function has no effect). Please
note that the current Open AT® application process is suspended immediately
on the adl_safeRunCommand process; if there is any code after this function
call, it will be executed only once the process is resumed.

RspHandler:
Response handler to get ran commands’ results. All responses are subscribed;
the command will be executed on the Open AT® virtual port. Instead of
providing a response handler, a port identifier may be specified (using
adl_port_e type): the command will be executed on this port, and the resulting
responses sent back on this port too.

• Returned values

o OK on success.
o ADL_RET_ERR_PARAM if the parameter has an incorrect value

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 114 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.15 AT Strings Service

This service provides APIs to process AT standard response strings.

3.15.1 Required Header File

The header file for the AT strings service is:
adl_str.h

3.15.2 The adl_strID_e type

This type defines all pre-defined AT strings by this service, defined below:

typedef enum
{

ADL_STR_NO_STRING, // Unknown string

ADL_STR_OK, // "OK"
ADL_STR_BUSY, // "BUSY"
ADL_STR_NO_ANSWER, // "NO ANSWER"
ADL_STR_NO_CARRIER, // "NO CARRIER"
ADL_STR_CONNECT, // "CONNECT"
ADL_STR_ERROR, // "ERROR"
ADL_STR_CME_ERROR, // "+CME ERROR:"
ADL_STR_CMS_ERROR, // "+CMS ERROR:"
ADL_STR_CPIN, // "+CPIN:"

ADL_STR_LAST_TERMINAL, // Terminal resp. are before this line

ADL_STR_RING = ADL_STR_LAST_TERMINAL, // "RING"
ADL_STR_WIND, // "+WIND:"
ADL_STR_CRING, // "+CRING:"
ADL_STR_CPINC, // "+CPINC:"
ADL_STR_WSTR, // "+WSTR:"
ADL_STR_CMEE, // "+CMEE:"
ADL_STR_CREG, // "+CREG:"
ADL_STR_CGREG, // "+CGREG:"
ADL_STR_CRC, // "+CRC:"
ADL_STR_CGEREP, // "+CGEREP:"

// Last string ID
ADL_STR_LAST

} adl_strID_e;

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 115 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.15.3 The adl_strGetID function

This function returns the ID of the response string provided.

• Prototype

adl_strID_e adl_strGetID (ascii * rsp);

• Parameters

rsp:
String to parse to get the ID.

• Returned values

o ADL_STR_NO_STRING if the string is unknown.
o Id of the string otherwise.

3.15.4 The adl_strGetIDExt function

This function returns the ID of the response string provided, with an optional
argument and its type.

• Prototype

adl_strID_e adl_strGetIDExt (ascii * rsp
 void * arg
 u8 * argtype);

• Parameters

rsp:
String to parse to get the ID.

arg:
Parsed first argument; not used if set to NULL.

argtype:
Type of the parsed argument:
if argtype is ADL_STR_ARG_TYPE_ASCII, arg is an ascii * string;
if argtype is ADL_STR_ARG_TYPE_U32, arg is an u32 * integer.

• Returned values

o ADL_STR_NO_STRING if the string is unknown.
o Id of the string otherwise.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 116 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.15.5 The adl_strIsTerminalResponse function

This function checks whether the response ID provided is a terminal response. A
terminal response is the last response that a response handler will receive from a sent
command.

• Prototype

bool adl_strIsTerminalResponse (adl_strID_e RspID);

• Parameters

RspID:
Response ID to check.

• Returned values

o TRUE if the provided response ID is a terminal one.
o FALSE otherwise.

3.15.6 The adl_strGetResponse function

This function provides the standard response string from its ID.

• Prototype

ascii * adl_strGetResponse (adl_strID_e RspID);

• Parameters

RspID:
Response ID from which to get the string.

• Returned values

o Standard response string on success;
o NULL if the ID does not exist.

IMPORTANT WARNING:
The returned pointer memory is allocated by this function, but its ownership is
transferred to the embedded application; i.e. the embedded application will
have to release the returned pointer.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 117 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.15.7 The adl_strGetResponseExt function

This function provides a standard response string from its ID, with the argument
provided.

• Prototype

ascii * adl_strGetResponseExt (adl_strID_e RspID,
 u32 arg);

• Parameters

RspID:
Response ID from which to get the string.

arg:
Response argument to copy in the response string; according to response ID,
this argument should be an u32 integer value, or an ascii * string.

• Returned values

Standard response string on success;
NULL if the ID does not exist.

IMPORTANT WARNING:
The returned pointer memory is allocated by this function, but its ownership is
transferred to the embedded application; i.e. the embedded application will
have to release the returned pointer.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 118 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.16 Application & Data storage Service

This service provides APIs to use the Application & Data storage volume. This volume
may be used to store data, or ".dwl" files (Wavecom OS updates, new Open AT®
applications or E2P configuration files) in order to be later installed on the product.

The default storage size is 768 Kbytes; it may be configured with the AT+WOPEN
command (Please refer to the AT commands interface guide for more information) .

This storage size has to be set to the maximum (about 1.2 Mbytes) in order to have
enough place to store a Wavecom OS update.

Warning: any A&D size change will result in formatting of this area (some seconds
after start-up; all A&D cells data will be erased).

Legal mention:

The Download Over The Air feature enables the Wavecom firmware to be remotely
updated.

The downloading and firmware updating processes have to be activated and
managed by an appropriate Open AT® based application to be developed by the
customer. The security of the whole process (request for update, authentication,
encryption, etc) has to be managed by the customer under his own responsibility.
Wavecom shall not be liable for any issue related to any use by customer of the
Download Over The Air feature.

WAVECOM AGREES AND THE CUSTOMER ACKNOWLEDGES THAT THE SDK Open
AT® IS PROVIDED “AS IS” BY WAVECOM WITHOUT ANY WARRANTY OR
GUARANTEE OF ANY KIND.

3.16.1 Required Header File

The header file for the Application & Data storage service is:
adl_ad.h

3.16.2 The adl_adSubscribe function

This function subscribes to the required A&D space cell identifier.

• Prototype

s32 adl_adSubscribe (u32 CellID
 u32 Size);

• Parameters

CellID:
A&D space cell identifier to subscribe to; this cell may already exist or not. If
the cell does not exist, the given size is allocated.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 119 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Size:
New cell size in bytes (this parameter is ignored if the cell already exists). It
may be set to ADL_AD_SIZE_UNDEF for a variable size. In this case, new cells
subscription will fail until the undefined size cell is finalised.
Total used size in flash will be data size + header size ; header size is variable
(with an average value of 16 bytes).

When subscribing, the size is rounded to the next multiple of 4 .

• Returned values

o A positive or null value on success:
• The A&D cell handle on success, to be used on further A&D API

functions calls,
o A negative error value:

• ADL_RET_ERR_ALREADY_SUBSCRIBED if the cell is already subscribed;
• ADL_AD_RET_ERR_OVERFLOW if there is not enough allocated space,
• ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available on the

product,
• ADL_RET_ERR_PARAM if the CellId parameter is 0xFFFFFFFF (this value

should not be used as an A&D Cell ID),
• ADL_RET_ERR_BAD_STATE (when subscribing an undefined size cell) if

another undefined size cell is already subscribed and not finalized.

3.16.3 The adl_adUnsubscribe function

This function unsubscribes from the given A&D cell handle.

• Prototype

s32 adl_adUnsubscribe (s32 CellHandle);

• Parameters

CellHandle:
A&D cell handle returned by adl_adSubscribe function.

• Returned values

o OK on success;
o ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 120 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.16.4 The adl_adEventSubscribe function

This function allows the application to provide ADL with an event handler to be
notified with A&D service related events.

• Prototype

s32 adl_adEventSubscribe (adl_adEventHdlr_f Handler);

• Parameters

Handler:
Call-back function provided by the application. Please refer to next chapter for
more information.

• Returned values

o A positive or null value on success:
• A&D event handle, to be used in further A&D API functions calls,

o A negative error value:
• ADL_RET_ERR_PARAM if the Handler parameter is invalid,
• ADL_RET_ERR_NO_MORE_HANDLES if the A&D event service has been

subscribed more than 128 times.

• Notes

In order to format or re-compact the A&D storage volume, the
adl_adEventSubscribe function has to be called before the adl_adFormat or the
adl_adRecompact functions.

3.16.5 The adl_adEventHdlr_f call-back type

This call-back function has to be provided to ADL through the adl_adEventSubscribe
interface, in order to receive A&D related events.

• Prototype

typedef void (*adl_adEventHdlr_f) (adl_adEvent_e Event,
u32 Progress);

• Parameters

Event:
Event is the received event identifier. The events (defined in the adl_adEvent_e
type) are described in the table below.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 121 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Event Meaning
ADL_AD_EVENT_FORMAT_INIT The adl_adFormat function has been called by

an application (a format process has just
been requested).

ADL_AD_EVENT_FORMAT_PROGRESS The format process is on going. Several
"progress" events should be received until the
process is completed.

ADL_AD_EVENT_FORMAT_DONE The format process is over. The A&D storage
area is now usable again. All cells have been
erased, and the whole storage place is
available.

ADL_AD_EVENT_RECOMPACT_INIT The adl_adRecompact function has been
called by an application (a re-compaction
process has been requested).

ADL_AD_EVENT_RECOMPACT_PROGRESS The re-compaction process is on going.
Several "progress" events should be received
until the process is complete.

ADL_AD_EVENT_RECOMPACT_DONE The re-compaction process is over: the A&D
storage area is now usable again. The space
previously used by deleted cells is now free.

ADL_AD_EVENT_INSTALL The adl_adInstall function has been called
by an application (an install process has just
been required and the wireless CPU® is going
to reset).

Progress:
On ADL_AD_EVENT_FORMAT_PROGRESS & ADL_AD_EVENT_RECOMPACT_PROGRESS events
reception, this parameter is the process progress ratio (considered as a
percentage).
On ADL_AD_EVENT_FORMAT_DONE & ADL_AD_EVENT_RECOMPACT_DONE events reception,
this parameter is set to 100%.
Otherwise, this parameter is set to 0.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 122 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.16.6 The adl_adEventUnsubscribe function

This function allows the Open AT® application to unsubscribe from the A&D events
notification.

• Prototype

s32 adl_adEventUnsubscribe (s32 EventHandle);

• Parameters

EventHandle:
Handle previously returned by the adl_adEventSubscribe function.

• Returned values

o OK on success,
o ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown,
o ADL_RET_ERR_NOT_SUBSCRIBED if no A&D event handler has been

subscribed,
o ADL_RET_ERR_BAD_STATE if a format or re-compaction process is currently

running with this event handle.

3.16.7 The adl_adWrite function

This function writes data at the end of the given A&D cell.

• Prototype

s32 adl_adWrite (s32 CellHandle
 u32 Size
 void * Data);

• Parameters

CellHandle:
A&D cell handle returned by adl_adSubscribe function.

Size:
Data buffer size in bytes.

Data:
Data buffer.

• Returned values

o OK on success,
o ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed,
o ADL_RET_ERR_PARAM on parameter error,
o ADL_RET_ERR_BAD_STATE if the cell is finalized,
o ADL_AD_RET_ERR_OVERFLOW if the write operation exceeds the cell size.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 123 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.16.8 The adl_adInfo function

This function provides information on the requested A&D cell.

• Prototype

s32 adl_adInfo (s32 CellHandle
 adl_adInfo_t * Info);

• Parameters

CellHandle:
A&D cell handle returned by the adl_adSubscribe function.

Info:
Information structure on requested cell, based on following type:

typedef struct
{
 u32 identifier; // identifier
 u32 size; // entry size
 void *data; // pointer to stored data
 u32 remaining; // remaining writable space unless finalized
 bool finalised; // TRUE if entry is finalized
}adl_adInfo_t;

• Returned values

o OK on success ;
o ADL_RET_ERR_PARAM on parameter error ;
o ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed.
o ADL_RET_ERR_BAD_STATE if the required cell is a not finalized undefined

size cell.

3.16.9 The adl_adFinalise function

This function sets the provided A&D cell in read-only (finalized) mode. The cell
content can no longer be modified.

• Prototype

s32 adl_adFinalise (s32 CellHandle);

• Parameters

CellHandle:
A&D cell handle returned by the adl_adSubscribe function.

• Returned values

o OK on success;
o ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed;
o ADL_RET_ERR_BAD_STATE if the cell was already finalized.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 124 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.16.10 The adl_adDelete function

This function deletes the A&D provided cell. The used space and the ID will be
available on the next re-compaction process.

• Prototype

s32 adl_adDelete (s32 CellHandle);

• Parameters

CellHandle:
A&D cell handle returned by the adl_adSubscribe function.

• Returned values

o OK on success;
o ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed.

Note: calling adl_adDelete will unsubscribe the allocated handle.

3.16.11 The adl_adInstall function

This function installs the content of the requested cell, if it is a .DWL file. This file
should be an Open AT® application, an EEPROM configuration file, an XModem
downloader binary file, or a Wavecom OS binary file.

WARNING: This API resets the product on success.

• Prototype

s32 adl_adInstall (u32 Handle);

• Parameters

Handle:
A&D cell handle returned by the adl_adSubscribe function.

• Returned values

o Product resets on success. The parameter of the adl_main function is then
set to ADL_INIT_DOWNLOAD_SUCCESS, or ADL_INIT_DOWNLOAD_ERROR, according to
.DWL file update success or not.
Before the product reset, all subscribed event handlers (if any) will receive
the ADL_AD_EVENT_INSTALL event, in order to let them perform the last
operations.

o ADL_INIT_DOWNLOAD_ERROR, according to the .DWL file update success or
not.

o ADL_RET_ERR_BAD_STATE if the cell is not finalized;
o ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 125 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.16.12 The adl_adRecompact function

This function starts the re-compaction process, which will release the deleted cells
spaces and IDs.

Warning: if some A&D cells are deleted, if this recompaction process is not performed
regularly, these deleted cells used space will not be freed.

• Prototype

s32 adl_adRecompact (s32 EventHandle);

• Parameters

EventHandle:
Event handle previously returned by the adl_adEventSubscribe function.
The associated handler will receive the re-compaction process events
sequence.

• Returned values

o OK on success. Event handlers will receive the following event sequence:
• ADL_AD_EVENT_RECOMPACT_INIT just after the process is launched,
• ADL_AD_EVENT_RECOMPACT_PROGRESS several times, indicating process

progression,
• ADL_AD_EVENT_RECOMPACT_DONE when the process is complete.

o ADL_RET_ERR_BAD_STATE if a re-compaction or format process is currently
running,

o ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown,
o ADL_RET_ERR_NOT_SUBSCRIBED if no A&D event handler has been subscribed,
o ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available on the

product.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 126 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.16.13 The adl_adGetState function

This function provides an information structure on the current A&D volume state.

• Prototype

s32 adl_adGetState (adl_adState_t * State);

• Parameters

State:
A&D volume information structure, based on following type:

typedef struct
{
 u32 freemem; // Space free memory size
 u32 deletedmem; // Deleted memory size
 u32 totalmem; // Total memory
 u16 numobjects; // Number of allocated objects
 u16 numdeleted; // Number of deleted objects
 u8 pad; // not used
} adl_adState_t;

• Returned values

o OK on success;
o ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available on the

product;
o ADL_AD_RET_ERR_NEED_RECOMPACT if a power down or a reset occurred when a

re-compaction process was running: the application has to launch the
adl_adRecompact function before using any other A&D service function;

o ADL_RET_ERR_PARAM on parameter error.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 127 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.16.14 The adl_adGetCellList function

This function provides the list of the current allocated cells.

• Prototype

s32 adl_adGetCellList (wm_lst_t * CellList);

• Parameters

CellList:
Return allocated cell list. The list elements are the cell identifiers and are based
on u32 type.
The list is ordered by cell id values, from the lowest to the greatest.

WARNING: the list used memory is allocated by the adl_adGetCellList function
and has to be released by the application.

• Returned values

o OK on success;
o ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available on

the product;
o ADL_RET_ERR_PARAM on parameter error.

Note :

• The number of elements in the returned list is limited by
ADL_AD_MAX_CELL_RETRIEVE.

• If the number of cell IDs to get is superior to ADL_AD_MAX_CELL_RETRIEVE,
use adl_adFindInit() and adl_adFindNext() functions (please refer to sections
3.16.16 and 3.16.17).

3.16.15 The adl_adFormat function

This function allows the A&D storage volume to be completely re-initialized. It is
allowed only if there are currently no subscribed cells, or if there is no currently
running re-compaction or format process.

Important warning:
All the A&D storage cells will be erased by this operation. The A&D storage format
process may take up to several seconds.

• Prototype

s32 adl_adFormat (s32 EventHandle);

• Parameters

EventHandle:
Event handle previously returned by the adl_adEventSubscribe function. The
associated handler will receive the format process events sequence.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 128 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Returned values

o OK on success. Event handlers will receive the following event sequence:
• ADL_AD_EVENT_FORMAT_INIT just after the process is launched,
• ADL_AD_EVENT_FORMAT_PROGRESS several times, indicating process

progression,
• ADL_AD_EVENT_FORMAT_DONE once the process is complete,

o ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown,
o ADL_RET_ERR_NOT_SUBSCRIBED if no A&D event handler has been

subscribed,
o ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available on the

product,
o ADL_RET_ERR_BAD_STATE if there is at least one currently subscribed cell, or if

a re-compaction or format process is already running.

3.16.16 The adl_adFindInit function

• Protoype :

s32 adl_adFindInit (u32 MinCellId,
 u32 MaxCellId,
 adl_adBrowse_t * BrowseInfo);

• Parameters :

MinCellId :
Minimum cell value for wanted cell identifiers

MaxCellId :
Maximum cell value for wanted cell identifiers

BrowseInfo :
Returned browse information, to be used with the adl_adFindNext() function
(see section 3.16.17).

This parameter is based on following type:

 typedef struct

 {

 u32 hidden[4]; // memory space necessary for cell information

 }adl_ adBrowse_t;

• Returned values :

o OK on success
o ADL_AD_RET_ERR_NOT_AVAILABLE if A&D space is not available
o ADL_RET_ERR_PARAM on parameter error

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 129 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.16.17 The adl_adFindNext function

This function performs a cell ID search on the browse informations provided by the
adl_ad_FindInit() function.

• Protoype

s32 adl_adFindNext (adl_adBrowse_t * BrowseInfo,

 u32 * CellID);

• Parameters

BrowseInfo:
Browse informations, returned by the adl_adFindInit() function.

CellID:
Next found cell ID.

• Returned values

o OK on success
o ADL_RET_ERR_PARAM on parameter error
o ADL_AD_RET_REACHED_END no more elements to enumerate

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 130 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.16.18 Example

This example demonstrates how to use the A&D service in a nominal case (error
cases not handled).

Complete examples using the A&D service are also available on the SDK (DTL
Application_Download sample, generic Download library sample).

// Global variables & constants

// Cell & event handles
s32 MyADCellHandle;
s32 MyADEventHandle;

// Info & state structure
adl_adInfo_t Info;
adl_adState_t State;

// A&D event handler
void MyADEventHandler (adl_adEvent_e Event, u32 Progress)
{
 // Check event
 switch (Event)
 {
 case ADL_AD_EVENT_RECOMPACT_DONE :
 case ADL_AD_EVENT_FORMAT_DONE :
 // The process is over
 TRACE ((1, “Format/Recompact process over…”));
 break;
 }
}

...

// Somewhere in the application code, used as an event handler
void MyFunction (void)
{
 // Local variables
 u8 DataBuffer [10];

 // Get state
 adl_adGetState (&State);

 // Subscribe to the A&D event service
 MyADEventHandle = adl_adEventSubscribe (MyADEventHandler);

 // Subscribe to an A&D cell
 MyADCellHandle = adl_adSubscribe (0x00000000, 20);

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 131 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

 // Write data buffer
 wm_memset (DataBuffer, 10, 0);
 adl_adWrite (MyADCellHandle, 10, DataBuffer);

 // Get info
 adl_adInfo (MyADCellHandle, &Info);

 // Install the cell (will fail, not finalized)
 adl_adInstall (MyADCellHandle);

 // Finalize the cell
 adl_adFinalise (MyADCellHandle);

 // Delete the cell
 adl_adDelete (MyADCellHandle);

 // Launch the re-compaction process
 adl_adRecompact (MyADEventHandle);

 // Launch the format process
 // (will fail, re-compaction process is running)

 adl_adFormat (MyADEventHandle);

 // Unsubscribe from the A&D event service
 // (will fail, re-compaction process is running)
 adl_adEventUnsubscribe (MyADEventHandler);
}

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 132 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.17 GPS Service

ADL applications may use this service to access the GPS device information on
Q2501 products.
Note: the product uses the module’s second UART to access the GPS component.
This will lock some GPIOs, which will not be available for allocation by the
application; please refer to §2.5 for more information.

3.17.1 Required Header File

The header file for the GPS service is:
adl_gps.h

3.17.2 GPS Data structures

3.17.2.1 Position

GPS Position data is stored in the following structure:
typedef struct
{
 ascii UTC_time [_S_UTC_TIME]; // hhmmss.sss
 ascii date [_S_DATE]; // ddmmyy
 ascii latitude [_S_POSITION]; // ddmm.mmmm
 ascii latitude_Indicator[_S_INDICATOR]; // N - S
 ascii longitude [_S_POSITION]; // dddmm.mmmm
 ascii longitude_Indicator[_S_INDICATOR]; // E - W
 ascii status[_S_INDICATOR];
 ascii P_Fix[_S_INDICATOR];
 ascii sat_used [_S_SAT]; // Satellites used
 ascii HDOP [_S_HDOP]; // Horizontal Dilution of

Precision
 ascii altitude [_S_ALTITUDE]; // MSL Altitude
 ascii altitude_Unit[_S_INDICATOR];
 ascii geoid_Sep [_S_GEOID_SEP]; // geoid correction
 ascii geoid_Sep_Unit[_S_INDICATOR];
 ascii Age_Dif_Cor [_S_AGE_DIF_COR]; // Age of Differential

correction
 ascii Dif_Ref_ID [_S_DIF_REF_ID]; // Diff Ref station ID
 ascii magneticVariation[_S_COURSE]; // magnetic variation: not

available for sirf
technology

} adl_gpsPosition_t;

All fields are ascii zero terminated strings containing GPS information.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 133 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.17.2.2 Speed

GPS Speed data is stored in the following structure:
typedef struct
{
 ascii course [_S_COURSE]; // Degrees from true North
 ascii speed_knots [_S_SPEED]; // Speed in knots
 ascii speed_km_p_hour [_S_SPEED]; // Speed in km/h
} adl_gpsSpeed_t;

All fields are ascii zero terminated strings containing GPS information.

3.17.2.3 Satellite View

GPS satellite view data is stored in the following structure:
typedef struct
{
 u8 id; // range 1 to 32
 u8 elevation; // maximum 90
 u32 azimuth; // range 0 to 359
 s8 SNR ; // range 0 to 99, -1 when not tracking
} adl_gpsSatellite_t;

All fields are integers containing GPS information about the current satellite.

typedef struct
{
 u8 NB_Msg ; // Number of messages
 u8 MSG_Number ; // Message Number
 u8 Sat_view ; // Satellites in view
 adl_gpsSatellite_t sat [_NB_SAT_MAX]; // array for informations about

differents satellites
} adl_gpsSatView_t;

The different fields contain information about the current satellite view. Each
satellite’s information details are contained in the “sat” field.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 134 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.17.3 The adl_gpsSubscribe function

This function subscribes to the GPS service in order to receive GPS related events.

• Prototype

s8 adl_gpsSubscribe (adl_gpsHdlr_f GpsHandler
 u32 PollingTime);

• Parameters

GpsHandler:
GPS events handler defined using the following type:

typedef bool (*adl_gpsHdlr_f) (adl_gpsEvent_e Event,
adl_gpsData_t* GpsData);

The events received by this handler are defined below:
ADL_GPS_EVENT_RESETING_HARDWARE

If the ADL GPS service needs to reset the product, in order to enable the
GPS device internal mode. The handler may refuse this reset by
returning FALSE. If at least one handler refuses the reset, the service
goes to ADL_GPS_STATE_EXT_MODE state.
The GpsData parameter is set to NULL.

ADL_GPS_EVENT_EXT_MODE

If the at least one Handler refused the
ADL_GPS_EVENT_RESETING_HARDWARE event, the service entered in
ADL_GPS_STATE_EXT_MODE state, and will be available on next product
reset. The GpsData parameter is set to NULL. Handler’s returned value is
not relevant.

ADL_GPS_EVENT_IDLE

If the service entered the ADL_GPS_STATE_IDLE state: the service is
ready to read GPS data. The GpsData parameter is set to NULL.
Handler’s returned value is not relevant.

ADL_GPS_EVENT_POLLING_DATA

If a Polling Time was required on subscription. The GpsData contains all
GPS data read from the GPS device. Handler’s returned value is not
relevant.

The GpsData parameter is based on the following type:
typedef struct
{
 adl_gpsPosition_t Position; // Current GPS position
 adl_gpsSpeed_t Speed; // Current GPS speed
 adl_gpsSatView_t SatView; // Current GPS satellite view
} adl_gpsData_t;

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 135 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Position:
Current GPS position data; please refer to GPS service data structures in §
3.17.2

Speed:
Current GPS speed data; please refer to GPS service data structures in §
3.17.2

SatView:
Current GPS satellite view data; please refer to GPS service data structures
in § 3.17.2

PollingTime:
Time interval (in seconds) between each GPS data polling event
(ADL_GPS_EVENT_POLLING_DATA) reception by the GPS handler.

• Returned values

o This function returns a positive or null handle on success;
o ADL_RET_ERR_PARAM on parameter error,
o ADL_RET_ERR_NO_MORE_HANDLES if there are no more free handles,
o ADL_GPS_RET_ERR_NO_Q25_PRODUCT if the current product is not a

Q2501 product.

3.17.4 The adl_gpsUnsubscribe function

This function un-subscribes from the GPS service. The corresponding GPS handler
will no longer receive any GPS events.

• Prototype

s8 adl_gpsUnsubscribe (u8 Handle);

• Parameters

Handle:
The handle returned by the adl_gpsSubscribe function.

• Returned values

o This function returns 0 on success,
o ADL_RET_ERR_NOT_SUBSCRIBED if the GPS service was not subscribed,
o ADL_RET_ERR_UNKNOWN_HDL if the handle provided is not a valid one,
o ADL_RET_ERR_BAD_STATE if the service is in INIT state.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 136 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.17.5 The adl_gpsGetState function

This function returns the current GPS service state.

• Prototype

adl_gpsState_e adl_gpsGetState (void);

• Returned values

The current GPS service state, based on following type:
typedef enum
{

ADL_GPS_STATE_INIT, // Service initialization state
ADL_GPS_STATE_NO_Q25, // Not a Q25 product
ADL_GPS_STATE_RESETING_HARDWARE, // Trying to reset product after have

set the GPS internal mode
ADL_GPS_STATE_EXT_MODE, // Reset refused: will be on internal mode on

next product start-up
ADL_GPS_STATE_IDLE // GPS driver in IDLE mode, ready to read data

} adl_gpsState_e;

3.17.6 The adl_gpsGetPosition function

This function gets the current position read from the GPS device.

• Prototype

s8 adl_gpsGetPosition (u8 Handle, adl_gpsPosition_t * Position);

• Parameters

Handle:
The handle returned by the adl_gpsSubscribe function.

Position:
Position data read from the GPS device. Please refer to GPS service data
structures in § 3.17.2

• Returned values

o This function returns OK on success.
o ADL_RET_ERR_NOT_SUBSCRIBED if the GPS service was not subscribed,
o ADL_RET_ERR_UNKNOWN_HDL if the handle provided is not a valid one,
o ADL_RET_ERR_BAD_STATE if the GPS service is out of IDLE state.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 137 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.17.7 The adl_gpsGetSpeed function

This function gets the current speed read from the GPS device.

• Prototype

s8 adl_gpsGetSpeed (u8 Handle, adl_gpsSpeed_t * Speed);

• Parameters

Handle:
The handle returned by the adl_gpsSubscribe function.

Speed:
Speed data read from the GPS device. Please refer to GPS service data
structures in § 3.17.2

• Returned values

o This function returns OK on success.
o ADL_RET_ERR_NOT_SUBSCRIBED if the GPS service was not subscribed,
o ADL_RET_ERR_UNKNOWN_HDL if the handle provided is not a valid one,
o ADL_RET_ERR_BAD_STATE if the GPS service is out of IDLE state.

3.17.8 The adl_gpsGetSatView function

This function gets the current satellite view read from the GPS device.

• Prototype

s8 adl_gpsGetSatView (u8 Handle, adl_gpsSatView_t * SatView);

• Parameters

Handle:
The handle returned by the adl_gpsSubscribe function.

SatView:
SatView data read from the GPS device. Please refer to GPS service data
structures in § 3.17.2

• Returned values

o This function returns OK on success.
o ADL_RET_ERR_NOT_SUBSCRIBED if the GPS service was not subscribed,
o ADL_RET_ERR_UNKNOWN_HDL if the handle provided is not a valid one,
o ADL_RET_ERR_BAD_STATE if the GPS service is out of IDLE state.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 138 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.18 AT/FCM IO Ports Service

ADL applications may use this service to be informed about the product AT/FCM IO
ports states.

3.18.1 Required Header File

The header file for the AT/FCM IO Ports service is:
adl_port.h

3.18.2 AT/FCM IO Ports

AT Commands and FCM services can be used to send and receive AT Commands or
data blocks, to or from one of the product ports. These ports are linked either to
product physical serial ports (as UART1 / UART2 / USB ports), or virtual ports (as
Open AT® virtual AT port, GSM CSD call data port, GPRS session data port or
Bluetooth virtual ports).

AT/FCM IO Ports are identified by the type below:

typedef enum
{
 ADL_PORT_NONE,
 ADL_PORT_UART1,
 ADL_PORT_UART2,
 ADL_PORT_USB,

 ADL_PORT_UART1_VIRTUAL_BASE = 0x10,
 ADL_PORT_UART2_VIRTUAL_BASE = 0x20,
 ADL_PORT_USB_VIRTUAL_BASE = 0x30,
 ADL_PORT_BLUETOOTH_VIRTUAL_BASE = 0x40,
 ADL_PORT_GSM_BASE = 0x50,
 ADL_PORT_GPRS_BASE = 0x60,
 ADL_PORT_OPEN_AT_VIRTUAL_BASE = 0x80
} adl_port_e;

The available ports are described below:

• ADL_PORT_NONE
Not usable

• ADL_PORT_UART1
Product physical UART 1
Please refer to the AT+WMFM command documentation to know how to
open/close this product port.

• ADL_PORT_UART2
Product physical UART 2
Please refer to the AT+WMFM command documentation to know how to
open/close this product port.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 139 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• ADL_PORT_USB
Product physical USB port (reserved for future products)

• ADL_PORT_UART1_VIRTUAL_BASE
Base ID for 27.010 protocol logical channels on UART 1
Please refer to AT+CMUX command & 27.010 protocol documentation to
know how to open/close such a logical channel.

• ADL_PORT_UART2_VIRTUAL _BASE
Base ID for 27.010 protocol logical channels on UART 2
Please refer to AT+CMUX command & 27.010 protocol documentation to
know how to open/close such a logical channel.

• ADL_PORT_USB_VIRTUAL _BASE
Base ID for 27.010 protocol logical channels on USB link (reserved for future
products)

• ADL_PORT_BLUETOOTH_VIRTUAL _BASE
Base ID for connected Bluetooth peripheral virtual port.
ONLY USABLE WITH THE FCM SERVICE
Please refer to the Bluetooth AT commands documentation to know how to
connect, and how to open/close such a virtual port.

• ADL_PORT_GSM_BASE
Virtual Port ID for GSM CSD data call flow
ONLY USABLE WITH THE FCM SERVICE
Please note that this port will be considered as always available (no
OPEN/CLOSE events for this port; adl_portIsAvailable function will always
return TRUE)

• ADL_PORT_GPRS_BASE
Virtual Port ID for GPRS data session flow
ONLY USABLE WITH THE FCM SERVICE
Please note that this port will be considered as always available (no
OPEN/CLOSE events for this port; adl_portIsAvailable function will always
return TRUE) if the GPRS feature is supported on the current product.

• ADL_PORT_OPEN_AT_VIRTUAL_BASE
Base ID for AT commands contexts dedicated to Open AT® applications
ONLY USABLE WITH THE AT COMMANDS SERVICE
This port is always available, and is opened immediately at the product’s
start-up. This is the default port on which the AT commands sent by the AT
Command service are executed.

3.18.3 Ports test macros

Some ports & events test macros are provided. These macros are defined below.

• ADL_PORT_IS_A_SIGNAL_CHANGE_EVENT(_e)
Returns TRUE if the event “_e” is a signal change one, FALSE otherwise.

• ADL_PORT_GET_PHYSICAL_BASE(_port)
Extracts the physical port identifier part of the “_port” provided.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 140 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

E.g. if used on a 27.010 virtual port identifier based on the UART 2, this
macro will return ADL_PORT_UART2.

• ADL_PORT_IS_A_PHYSICAL_PORT(_port)
Returns TRUE if the “_port” provided is a physical output based one (E.g.
UART1, UART2 or 27.010 logical ports), FALSE otherwise.

• ADL_PORT_IS_A_PHYSICAL_OR_BT_PORT(_port)
Returns TRUE is the “_port” provided is a physical output or a bluetooth
based one, FALSE otherwise.

• ADL_PORT_IS_AN_FCM_PORT(_port)
Returns TRUE if the “_port” provided is able to handle the FCM service (i.e. all
ports except the Open AT® virtual base ones), FALSE otherwise.

• ADL_PORT_IS_AN_AT_PORT(_port)
Returns TRUE if the “_port” provided is able to handle AT commands services
(i.e. all ports except the GSM & GPRS virtual base ones), FALSE otherwise.

3.18.4 The adl_portSubscribe function

This function subscribes to the AT/FCM IO Ports service in order to receive specific
port-related events.

• Prototype

s8 adl_portSubscribe (adl_portHdlr_f PortHandler);

• Parameters

PortHandler:
Port-related events handler defined using the following type:

typedef void (*adl_portHdlr_f) (adl_portEvent_e Event,
adl_port_e Port,
u8 State);

The events received by this handler are defined below:

ADL_PORT_EVENT_OPENED

Informs the ADL application that the specified Port is now opened.
According to its type, it may now be used with either the AT Commands
service or FCM service.

ADL_PORT_EVENT_CLOSED

Informs the ADL application that the specified Port is now closed. It is
no longer usable with either the AT Commands service or FCM service.

ADL_PORT_EVENT_DSR_STATE_CHANGE

Informs the ADL application that the specified Port DSR signal state has
changed to the new State value (0/1). This event will be received by all

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 141 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

subscribers that have started a polling process on the specified Port DSR
signal with the adl_portStartSignalPolling function.

ADL_PORT_EVENT_CTS_STATE_CHANGE

Informs the ADL application that the specified Port CTS signal state has
changed to the new State value (0/1). This event will be received by all
subscribers that have started a polling process on the specified Port CTS
signal with the adl_portStartSignalPolling function.

The handler Port parameter uses the adl_port_e type described above.
The handler State parameter is set only for the
ADL_PORT_EVENT_XXX_STATE_CHANGE events.

• Returned values

o A positive or null handle on success;
o ADL_RET_ERR_PARAM on parameter error,
o ADL_RET_ERR_NO_MORE_HANDLES if there are no more free handles (the

service is able to process up 127 subscriptions).

3.18.5 The adl_portUnsubscribe function

This function unsubscribes from the AT/FCM IO Ports service. The related handler will
no longer receive port-related events. If a signal polling process was started only for
this handle, it will be automaticaly stopped.

• Prototype

s8 adl_portUnsubscribe (u8 Handle);

• Parameters

Handle:
Handle previously returned by the adl_portSubscribe function.

• Returned values

o OK on success;
o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown ;
o ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 142 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.18.6 The adl_portIsAvailable function

This function checks if the required port is currently opened or not.

• Prototype

bool adl_portIsAvailable (adl_port_e Port);

• Parameters

Port:
Port from which to require the current state.

• Returned values

o TRUE if the port is currently opened;
o FALSE if the port is closed, or if it does not exists.

• Notes

o The function will always return TRUE on the ADL_PORT_GSM_BASE port;
o The function will always return TRUE on the ADL_PORT_GPRS_BASE port if

the GPRS feature is enabled (always FALSE otherwise).

3.18.7 The adl_portGetSignalState function

This function returns the required port signal state.

• Prototype

s8 adl_portGetSignalState (adl_port_e Port,
adl_portSignal_e Signal);

• Parameters

Port:
Port from which to require the current signal state. Only physical output related
ports (UARTX & USB ports, used as physical ports, or with the 27.010
protocol) may be used with this function.

Signal:
Signal from which to query the current state, based on the following type:

typedef enum
{
 ADL_PORT_SIGNAL_CTS,
 ADL_PORT_SIGNAL_DSR,

 ADL_PORT_SIGNAL_LAST
} adl_portSignal_e;

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 143 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Signals are detailed below:

ADL_PORT_SIGNAL_CTS

Required port CTS input signal : physical pin for a physical port (UARTX),
emulated logical signal for a 27.010 logical port.

ADL_PORT_SIGNAL_DSR
Required port DSR input signal : physical pin for a physical port
(UARTX), emulated logical signal for a 27.010 logical port.

• Returned values

o The signal state (0/1) on success;
o ADL_RET_ERR_PARAM on parameter error;
o ADL_RET_ERR_BAD_STATE if the required port is not opened.

3.18.8 The adl_portStartSignalPolling function

This function starts a polling process on a required port signal for the provided
subscribed handle.
Only one polling process can run at a time. A polling process is defined on one port,
for one or several of this port’s signals.
It means that this function may be called several times on the same port in order to
monitor several signals; the polling time interval is set up by the first function call
(polling tme parameters are ignored or further calls). If the function is called several
times on the same port & signal, additional calls will be ignored.

Once a polling process is started on a port’s signal, this is monitored: each time this
signal state changes, a ADL_PORT_EVENT_XXX_STATE_CHANGE event is sent to all
the handlers which have required a polling process on it.

Whatever the number of requested signals and subscribers to this port polling
process, a single cyclic timer will be internally used for this one.

• Prototype

s8 adl_portStartSignalPolling (u8 Handle,
adl_port_e Port,
adl_portSignal_e Signal,
u8 PollingTimerType,
u32 PollingTimerValue);

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 144 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Parameters

Handle:
Handle previously returned by the adl_portSubscribe function.

Port:
Port on which to run the polling process. Only physical output related ports
(UARTX & USB ones, used as physical ports, or with the 27.010 protocol) may
be used with this function.

Signal:
Signal to monitor during the polling process. See the adl_portGetSignalState
function for information about the available signals.

PollingTimerType:
PollingTimerValue parameter value’s unit. The allowed values are defined
below:

Timer type Timer unit

ADL_TMR_TYPE_100MS PollingTimerValue is in 100 ms steps

ADL_TMR_TYPE_TICK PollingTimerValue is in 18.5 ms tick
steps

This parameter is ignored on additional function calls on the same port.

PollingTimerValue:
Polling time interval (uses the PollingTimerType parameter’s value unit).

This parameter is ignored on additional function calls on the same port.

• Returned values

o OK on success ;
o ADL_RET_ERR_PARAM on parameter error;
o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown;
o ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed;
o ADL_RET_ERR_BAD_STATE if the required port is not opened;
o ADL_RET_ERR_ALREADY_SUBSCRIBED if a polling process is already

running on another port.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 145 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.18.9 The adl_portStopSignalPolling function

This function stops a running polling process on a required port signal for the
provided subscribed handle.

The associated handler will no longer receive the
ADL_PORT_EVENT_XXX_STATE_CHANGE events related to this signal port.

The internal polling process cyclic timer will be stopped as soon as the last subscriber
to the current running polling process has called this function.

• Prototype

s8 adl_portStopSignalPolling (u8 Handle,
adl_port_e Port,
adl_portSignal_e Signal);

• Parameters

Handle:
Handle previously returned by the adl_portSubscribe function.

Port:
Port on which the polling process to stop is running.

Signal:
Signal on which the polling process to stop is running.

• Returned values

o OK on success ;
o ADL_RET_ERR_PARAM on parameter error;
o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown;
o ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed;
o ADL_RET_ERR_BAD_STATE if the required port is not opened;
o ADL_RET_ERR_BAD_HDL if there is no running polling process for this

Handle / Port / Signal combination.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 146 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.19 RTC Service

ADL provides an RTC service to access to the module’s inner RTC, and to process
time related data.

3.19.1 Required Header File

The header file for the RTC functions is:
adl_rtc.h

3.19.2 RTC service types

3.19.2.1 The adl_rtcTime_t structure

This type is the used structure by the Wavecom Core Software in order to retrieve the
current RTC time. This type is defined below:

typedef struct
{
 u8 Year; // Year (Two digits)
 u8 Month; // Month (1-12)
 u8 Day; // Day of the month (1-31)
 u8 Hour; // Hour (0-23)
 u8 Minute; // Minute (0-59)
 u8 Second; // Second (0-59)
 u16 SecondFracPart; // Second fractional part
} adl_rtcTime_t;

Years are cyclically provided on two digits, without any century information.

Second fractional part step is the ADL_RTC_SECOND_FRACPART_STEP constant. This field’s
most significant bit is not used (values are in the [0 – 0x7FFF] range).

3.19.2.2 The adl_rtcTimeStamp_t structure

This type may be used in order to perform arithmetic operations on time data ; it is
defined below:

typedef struct
{
 u32 TimeStamp; // Seconds elapsed since 1st January 1970
 u16 SecondFracPart; // Second fractional part
} adl_rtcTimeStamp_t;

The timestamp uses the Unix format (seconds elapsed since the 1st January 1970).

Second fractional part step is the ADL_RTC_SECOND_FRACPART_STEP constant. This field’s
most significant bit is not used (values are in the [0 – 0x7FFF] range).

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 147 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.19.2.3 Constants

RTC service constants are defined below.

Constant Value Use

ADL_RTC_SECOND_FRACPART_STEP 30.5 Second fractional part step value
(in μs); The real value is 1/215

ADL_RTC_DAY_SECONDS 24x60x60 Seconds count in a day

ADL_RTC_HOUR_SECONDS 60x60 Seconds count in an hour

ADL_RTC_MINUTE_SECONDS 60 Seconds count in a minute

ADL_RTC_MS_US 1000 μseconds count in a millisecond

3.19.2.4 Macros

RTC service macros are defined below.

Macro Parameter Use

ADL_RTC_GET_TIMESTAMP_SECONDS(_t)
adl_rtcTimeStamp_t
structure

Timestamp seconds part
(0-59)

ADL_RTC_GET_TIMESTAMP_MINUTES(_t)
adl_rtcTimeStamp_t
structure

Timestamp minutes part
(0-59)

ADL_RTC_GET_TIMESTAMP_HOURS(_t)
adl_rtcTimeStamp_t
structure

Timestamp hours part (0-
23)

ADL_RTC_GET_TIMESTAMP_DAYS(_t)
adl_rtcTimeStamp_t
structure Timestamp days part

ADL_RTC_GET_TIMESTAMP_MS(_t)
adl_rtcTimeStamp_t
structure

Timestamp milliseconds
part (0-999)

ADL_RTC_GET_TIMESTAMP_US(_t)
adl_rtcTimeStamp_t
structure

Timestamp microseconds
part (0-999)

These macros may be used in order to extract duration parts from a given timestamp;
the logical equations below are always true:

_t.TimeStamp == ADL_RTC_GET_TIMESTAMP_SECONDS(_t) + ADL_RTC_GET_TIMESTAMP_MINUTES(_t) *
ADL_RTC_MINUTE_SECONDS + ADL_RTC_GET_TIMESTAMP_HOURS(_t) *
ADL_RTC_HOUR_SECONDS +
ADL_RTC_GET_TIMESTAMP_DAYS(_t) * ADL_RTC_DAY_SECONDS

_t.SecondFracPart * ADL_RTC_SECOND_FRACPART_STEP ==
ADL_RTC_GET_TIMESTAMP_MS(_t) * ADL_RTC_MS_US +
ADL_RTC_GET_TIMESTAMP_US(_t)

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 148 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.19.3 The adl_rtcGetTime function

This function retrieves the current RTC time structure.

• Prototype

s32 adl_rtcGetTime (adl_rtcTime_t * TimeStructure);

• Parameters

TimeStructure:
Retrieved current time structure.

• Returned values

o OK on success.
o ADL_RET_ERR_PARAM if the parameter is incorrect.

3.19.4 The adl_rtcConvertTime function

This function is able to convert RTC time structure to timestamp structure, and
timestamp structure to RTC time structure.

• Prototype

s32 adl_rtcConvertTime (adl_rtcTime_t * TimeStructure,
 adl_rtcTimeStamp_t * TimeStamp,
 adl_rtcConvert_e Conversion);

• Parameters

TimeStructure:
Input / output RTC time structure

TimeStamp:
Input / output timestamp structure

Conversion:
Conversion mode, using the type below:

typedef enum
{
 ADL_RTC_CONVERT_TO_TIMESTAMP,
 ADL_RTC_CONVERT_FROM_TIMESTAMP
} adl_rtcConvert_e;

ADL_RTC_CONVERT_TO_TIMESTAMP

This mode allows the TimeStructure parameter to be converted to a
TimeStamp parameter. Since RTC structure years are only available on
two digits, real years will be considered from 1970 to 2069.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 149 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

ADL_RTC_CONVERT_FROM_TIMESTAMP
This mode allows the TimeStamp parameter to be converted to a
TimeStructure parameter. Since RTC structure years are only available
on two digits, timestamps greater or equal to 2O7O year will lead to a
conversion error.

• Returned values

o OK on success.
o ERROR if conversion failed (internal error).
o ADL_RET_ERR_PARAM if one parameter value is incorrect.
o ADL_RET_ERR_OVERFLOW if a “From Timestamp” conversion is required

on a year greater or equal to 2070.

3.19.5 The adl_rtcDiffTime function

This function allows the difference between two timestamp structures to be
reckoned.

• Prototype

s32 adl_rtcDiffTime (adl_rtcTimeStamp_t * TimeStamp1,
 adl_rtcTimeStamp_t * TimeStamp2,
 adl_rtcTimeStamp_t * Result);

• Parameters

TimeStamp1:
First timestamp

TimeStamp2:
Second timestamp

Result:
Time difference between the two timestamps provided

• Returned values

o O on success, and if TimeStamp1 equals to TimeStamp2.
o 1 on success, and if TimeStamp1 is greater than TimeStamp2.
o -1 on success, and if TimeStamp2 is greater than TimeStamp1.
o ADL_RET_ERR_PARAM if one parameter value is incorrect.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 150 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

3.20 DAC Service

3.20.1 Required Header File

The header file for the functions dealing with the DAC interface is:
adl_dac.h

3.20.2 The adl_dacSubscribe function

This function subscribes to one of the module DAC block interfaces.

• Prototype

s32 adl_dacSubscribe (adl_dacChannel_e Channel,
adl_dacParam_t * Parameters)

• Parameters

Channel:
The DAC channel identifier to be subscribed, using the type below:

typedef enum
{
 ADL_DAC_CHANNEL_1,
 ADL_DAC_NUMBER_OF_CHANNEL,
 ADL_DAC_CHANNEL_PAD = 0x7fffffff
} adl_dacChannel_e;

Channel identifiers depend on the current module type (please refer to the
module Product Technical Specification document for more information):

Module type Channel
identifier

Output DAC PIN
name

Output DAC PIN
number

Q2501 ADL_DAC_CHANNEL_1 AUXDAC 31

Parameters:
DAC channel initialization parameters, using the type below:

typedef struct {
 u32 InitialValue;
} adl_dacParam_t;

InitialValue:
Initial value to be written on the DAC just after this has been opened.
Significant bits and output voltage depends on the module type (please refer
to the module Product Technical Specification document for more
information).

Module type Significant bits Max. output voltage
Q2501 8 less significant bits 2.64 V (for 0xFF value)

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 151 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

• Returned values

- A positive or null value on success:
 DAC service handle, to be used with further DAC service functions

calls.
- A negative error value otherwise:

 ADL_RET_ERR_ALREADY_SUBSCRIBED if the required channel has
already been subscribed.

 ADL_RET_ERR_NO_MORE_HANDLES if there are no more free DAC
handles.

 ADL_RET_ERR_NOT_SUPPORTED if the current module does not
support the DAC service.

 ADL_RET_ERR_PARAM on parameter error.

• Notes

The DAC service is only available on the Q2501 product.

3.20.3 The adl_dacUnsubscribe function

This function un-subscribes from a previously subscribed DAC block.

• Prototype

s32 adl_dacUnsubscribe (s32 Handle)

• Parameters

Handle:
DAC service handle previously returned by the adl_dacSubscribe function.

• Returned values

- OK on success
- ADL_RET_ERR_UNKNOWN_HDL if the handle provided is unknown

3.20.4 The adl_dacWrite function

This function allows the output value of a subscribed DAC block to be set.

• Prototype

s32 adl_dacWrite (s32 Handle,
u32 Value)

• Parameters

Handle:
DAC service handle previously returned by the adl_dacSubscribe function.

ADL User Guide for Open AT® OS v3.13

API

©Confidential Page: 152 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

Value:
Value to be written on the DAC output. Significant bits and output voltage
depend on module type (please refer to the module Product Technical
Specification document for more information).

Module type Significant bits Max. output voltage
Q2501 8 less significant bits 2.64 V (for 0xFF value)

• Returned values

- OK on success
- ADL_RET_ERR_PARAM on parameter error.

3.20.5 Example

This example just demonstrates how to use the DAC service in a nominal case (error
cases not handled).

A full example using the DAC service is also available on the SDK (ADL generic DAC
sample).

// Global variable
s32 MyDACHandle;

…

// Somewhere in the application code, used as an event handler
void MyFunction (void)
{
 // Initialization structure
 adl_dacParam_t InitStruct = { 0 };

 // Subscribe to the DAC service
 MyDACHandle = adl_dacSubscribe (ADL_DAC_CHANNEL_1, &InitStruct);

 // Write a value on the DAC block
 adl_dacWrite (MyDACHandle, 80);

 ...

 // Write another value on the DAC block
 adl_dacWrite (MyDACHandle, 190);

 ...

 // Unsubscribe from the DAC service
 adl_dacUnsubscribe (MyDACHandle);
}

ADL User Guide for Open AT® OS v3.13

Error codes

©Confidential Page: 153 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

4 Error codes

4.1 General error codes

Error code Error value Description

OK 0 No error response

ERROR -1 general error code

ADL_RET_ERR_PARAM -2 parameter error

ADL_RET_ERR_UNKNOWN_HDL -3 unknown handler / handle error

ADL_RET_ERR_ALREADY_SUBSCRIBED -4 service already subscribed

ADL_RET_ERR_NOT_SUBSCRIBED -5 service not subscribed

ADL_RET_ERR_FATAL -6 fatal error

ADL_RET_ERR_BAD_HDL -7 Bad handle

ADL_RET_ERR_BAD_STATE -8 Bad state

ADL_RET_ERR_PIN_KO -9 Bad PIN state

ADL_RET_ERR_NO_MORE_HANDLES -10 The service subscription maximum
capacity is reached

ADL_RET_ERR_DONE -11 The required iterative process is
now terminated

ADL_RET_ERR_OVERFLOW -12 The required operation has
exceeded the function capabilities

ADL_RET_ERR_NOT_SUPPORTED -13 An option, required by the function,
is not enabled on the Wireless
CPU®: the function is not supported
in this configuration

ADL_RET_ERR_SPECIFIC_BASE -20 Beginning of specific errors range

4.2 Specific FCM service error codes

Error code Error value

ADL_FCM_RET_ERROR_GSM_GPRS_ALREADY_OPENNED ADL_RET_ERR_SPECIFIC_BASE

ADL_FCM_RET_ERR_WAIT_RESUME ADL_RET_ERR_SPECIFIC_BASE-1

ADL_FCM_RET_OK_WAIT_RESUME OK+1

ADL_FCM_RET_BUFFER_EMPTY OK+2

ADL_FCM_RET_BUFFER_NOT_EMPTY OK+3

ADL User Guide for Open AT® OS v3.13

Error codes

©Confidential Page: 154 / 154

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_ASW_OAT_UGD_00006 - 011 May 3, 2007

4.3 Specific flash service error codes

Error code Error value

ADL_FLH_RET_ERR_OBJ_NOT_EXIST ADL_RET_ERR_SPECIFIC_BASE

ADL_FLH_RET_ERR_MEM_FULL ADL_RET_ERR_SPECIFIC_BASE-1

ADL_FLH_RET_ERR_NO_ENOUGH_IDS ADL_RET_ERR_SPECIFIC_BASE-2

ADL_FLH_RET_ERR_ID_OUT_OF_RANGE ADL_RET_ERR_SPECIFIC_BASE-3

4.4 Specific GPRS service error codes

Error code Error value

ADL_GPRS_CID_NOT_DEFINED -3

ADL_NO_GPRS_SERVICE -4

ADL_CID_NOT_EXIST 5

4.5 Specific GPS service error codes

Error code Error value

ADL_GPS_RET_ERR_NO_Q25_PRODUCT ADL_RET_ERR_SPECIFIC_BASE

4.6 Specific A&D storage service error codes

Error code Error value

ADL_AD_RET_ERR_NOT_AVAILABLE ADL_RET_ERR_SPECIFIC_BASE

ADL_AD_RET_ERR_OVERFLOW ADL_RET_ERR_SPECIFIC_BASE - 1

ADL_AD_RET_ERROR ADL_RET_ERR_SPECIFIC_BASE - 2

ADL_AD_RET_ERR_NEED_RECOMPACT ADL_RET_ERR_SPECIFIC_BASE - 3

WAVECOM S.A. - 3 esplanade du Foncet - 92442 Issy-les-Moulineaux Cedex - France - Tel: +33(0)1 46 29 08 00 - Fax: +33(0)1 46 29 08 08
Wavecom, Inc. - 4810 Eastgate Mall - Second Floor - San Diego, CA 92121 - USA - Tel: +1 858 362 0101 - Fax: +1 858 558 5485
WAVECOM Asia Pacific Ltd. - Unit 201-207, 2nd Floor, Bio-Informatics Centre – No.2 Science Park West Avenue - Hong Kong Science Park, Shatin

- New Territories, Hong Kong

	ADL User Guide for Open AT® OS v3.13
	Document History
	Trademarks
	Copyright
	Overview
	Table of Contents
	List of Figures
	Introduction
	Important remarks
	References
	Glossary
	Abbreviations

	Description
	Software Architecture
	Minimum Embedded Application Code
	Imported APIs from Open AT® library
	ADL limitations
	UART 2 and GPIOs shared resources
	Q2501 product external battery charging mechanism GPIO shared resource
	SIM Level Shifter and GPO shared resources
	Open AT® Memory resources
	Defined compilation flags
	Inner AT commands configuration
	Open AT® specific AT Commands
	AT+WDWL Command
	AT+WOPEN Command

	API
	Commands
	Required Header File
	Unsolicited Responses
	Responses
	Incoming AT commands
	Run AT commands

	Timers
	Required Header Files
	The adl_tmrSubscribe function
	The adl_tmrUnSubscribe function
	Example

	Memory Service
	Required Header File
	The adl_memGetType function [DEPRECATED]
	The adl_memGetInfo function
	The adl_memGet function
	The adl_memRelease function
	Example

	Debug traces
	Required Header File
	Debug configuration
	Full Debug configuration
	Release configuration

	Flash
	Required Header File
	Flash Objects Management
	The adl_flhSubscribe function
	The adl_flhExist function
	The adl_flhErase function
	The adl_fhWrite function
	The adl_flhRead function
	The adl_flhGetFreeMem function
	The adl_flhGetIDCount function
	The adl_flhGetUsedSize function

	FCM Service
	Required Header File
	The adl_fcmIsAvailable function
	The adl_fcmSubscribe function
	The adl_fcmUnsubscribe function
	The adl_fcmReleaseCredits function
	The adl_fcmSwitchV24State function
	The adl_fcmSendData function
	The adl_fcmSendDataExt function
	The adl_fcmGetStatus function

	GPIO Service
	Required Header File
	The adl_ioSubscribe function
	The adl_ioUnsubscribe function
	The adl_ioRead function
	The adl_ioWrite function
	The adl_io GetProductType function

	Bus Service
	Required Header File
	The adl_busSubscribe function
	The adl_busUnsubscribe function
	The adl_busRead function
	The adl_busWrite function

	Errors management
	Required Header File
	The adl_errSubscribe function
	The adl_errUnsubscribe function
	The adl_errHalt function
	The adl_errEraseAllBacktraces function
	The adl_errStartBacktraceAnalysis function
	The adl_errGetAnalysisState function
	The adl_errRetrieveNextBacktrace function

	SIM Service
	Required Header File
	The adl_simSubscribe function
	The adl_simUnsubscribe function
	The adl_simGetState function

	SMS Service
	Required Header File
	The adl_smsSubscribe function
	The adl_smsSend function
	The adl_smsUnsubscribe function

	Call Service
	Required Header File
	The adl_callSubscribe function
	The adl_callSetup function
	The adl_callSetupExt function
	The adl_callHangup function
	The adl_callHangupExt function
	The adl_callAnswer function
	The adl_callAnswerExt function
	The adl_callUnsubscribe function

	GPRS Service
	Required Header File
	The adl_gprsSubscribe function
	The adl_gprsSetup function
	The adl_gprsSetupExt function
	The adl_gprsAct function
	The adl_gprsActExt function
	The adl_gprsDeact function
	The adl_gprsDeactExt function
	The adl_gprsGetCidInformations function
	The adl_gprsUnsubscribe function
	The adl_gprsIsAnIPAddress function
	3.13.12 Example

	Application Safe Mode Service
	Required Header File
	The adl_safeSubscribe function
	The adl_safeUnsubscribe function
	The adl_safeRunCommand function

	AT Strings Service
	Required Header File
	The adl_strID_e type
	The adl_strGetID function
	The adl_strGetIDExt function
	The adl_strIsTerminalResponse function
	The adl_strGetResponse function
	The adl_strGetResponseExt function

	Application & Data storage Service
	Required Header File
	The adl_adSubscribe function
	The adl_adUnsubscribe function
	The adl_adEventSubscribe function
	The adl_adEventHdlr_f call-back type
	The adl_adEventUnsubscribe function
	The adl_adWrite function
	The adl_adInfo function
	The adl_adFinalise function
	The adl_adDelete function
	The adl_adInstall function
	The adl_adRecompact function
	The adl_adGetState function
	The adl_adGetCellList function
	The adl_adFormat function
	The adl_adFindInit function
	The adl_adFindNext function
	Example

	GPS Service
	Required Header File
	GPS Data structures
	The adl_gpsSubscribe function
	The adl_gpsUnsubscribe function
	The adl_gpsGetState function
	The adl_gpsGetPosition function
	The adl_gpsGetSpeed function
	The adl_gpsGetSatView function

	 AT/FCM IO Ports Service
	Required Header File
	AT/FCM IO Ports
	Ports test macros
	The adl_portSubscribe function
	The adl_portUnsubscribe function
	The adl_portIsAvailable function
	The adl_portGetSignalState function
	The adl_portStartSignalPolling function
	The adl_portStopSignalPolling function

	RTC Service
	Required Header File
	RTC service types
	The adl_rtcGetTime function
	The adl_rtcConvertTime function
	The adl_rtcDiffTime function

	DAC Service
	Required Header File
	The adl_dacSubscribe function
	The adl_dacUnsubscribe function
	The adl_dacWrite function
	Example

	Error codes
	General error codes
	Specific FCM service error codes
	Specific flash service error codes
	Specific GPRS service error codes
	Specific GPS service error codes
	Specific A&D storage service error codes

