

 1

RAM SIZE REPORT

The RAM Size report, which shows the sizes of the various application components, is a
diagnostic tool that helps identify components with excessive RAM sizes. This report is derived
from C files that are produced by the Code Generator, and it therefore involves operations that are
not required for the production of other Rapid reports.

Production of the RAM Size report is a 3-step process:

1. Generating code to produce the data files.

2. Compiling and linking a project that contains the relevant C file to generate the report-
producing, executable file.

3. Running the executable file to produce the report.

These steps are explained in detail in the following sections.

Step 1: Generating the Data Files

In addition to information from the standard .h files produced during code generation, the RAM
Size report also uses files that must be especially generated for this purpose. These files are
produced during code generation when the Create Size Report Files check box is selected (in the
Code Generation Status dialog box), and are placed in the Size folder in the code generation source
output folder.

Step 2: Creating the Executable File

The RAM Size report uses some of the standard files generated by the Code Generator and other
files generated specifically for this report.

To create the executable file:

1. Create a project that contains the file named RAM_report_<appname>.c from the Size folder
in the code generation source output directory. The Size folder, as well as the files in it, is
created by the Code Generator when the “Create Size Report Files” check box is selected.

 Include paths to the following files:

• The .h files from the code generation source output directory.

• The .h files from the Rapid codegen directory.

• The .h files from the Size folder directory.

❖ NOTE: When a component in a RapidPLUS project is generated as “Stand-alone
application” or “Empty task,” you have to create a separate project for each of these
components, because they are not a part of the main application. The Size folder will
contain a .c file for each of these separate components. For example, if your Rapid
application contains the user object “empty.udo”, which is marked as “Empty Task”,
 then the Size folder will contain an additional file named “RAP_report_tempty.c”.

RAM SIZE REPORT 2

2. (Optional) If your target system supports output to files, and you want to store the RAM Size
report in a text file, add the following line in the User Code section at the beginning of the
RAM_report_<appname>.c file:

/******** RapidUserCode BEGIN HEADER_RAM_report_szapp.c ********/

#define STORE_RAM_REPORT_IN_FILE

/******** RapidUserCode END HEADER_RAM_report_szapp.c ********/

 (You need to perform this step in the first code generation session. This code is stored even if
you repeat code generation after modification to the Rapid application.)

3. Compile and link the project.

❖ NOTE: The executable will yield the most accurate report when it is created with the target
compiler and linker. If the target system is not capable of printing the report, you can use
DOS (for 16-bit targets) or Windows (for 32-bit targets). This may slightly distort the reported
sizes, but will not affect their relative values.

Step 3: Producing the Report

To produce the report, simply run the executable file. The output is displayed on the console and
two text files are created:

• _Summary_<appname>.txt: presents the RAM size of each component as well as the total
RAM used.

• _Detail_<appname>.txt: presents RAM size information about each component’s C
structures.

A sample of the summary report

Report Legend

Component Name presents the name of each component and its code generation type.

Structure indicates the amount of RAM used by each component.

RAM SIZE REPORT 3

Buffer indicates the amount of RAM allocated statically outside the structure.

❖ NOTE: If you have not checked the option “Support compilers with structure size
limitation” in the Code Generation Preferences dialog box, Miscellany page, then the
item “Buffer” does not appear in the report because the externally allocated memory
buffers become a part of the component’s structure.

Instances indicates the number of statically allocated instances of the component.

❖ NOTE: If the number of statically allocated instances of a user object is 0, its size is still
included in the RAM Size report, but it does not influence the total RAM size. It may be
useful to estimate additional RAM size when using dynamic memory allocation.

Total Size equals (Structure + Buffer) × Instances.

A sample of the detailed report

Report Legend

Field Type presents the types of structure fields.

Field Name presents names of each structure field.

Size indicates the RAM size of each field.

	RAM SIZE REPORT
	Step 1: Generating the Data Files
	Step 2: Creating the Executable File
	Step 3: Producing the Report
	A sample of the summary report
	Report Legend
	A sample of the detailed report
	Report Legend

